摘要:=+6=2+--- 题知,= ,所以当或时.取最小项.其值为3----
网址:http://m.1010jiajiao.com/timu_id_496716[举报]
已知函数在
取得极值
(1)求的单调区间(用
表示);
(2)设,
,若存在
,使得
成立,求
的取值范围.
【解析】第一问利用
根据题意在
取得极值,
对参数a分情况讨论,可知
当即
时递增区间:
递减区间:
,
当即
时递增区间:
递减区间:
,
第二问中, 由(1)知:
在
,
,
在
从而求解。
解:
…..3分
在
取得极值,
……………………..4分
(1) 当即
时 递增区间:
递减区间:
,
当即
时递增区间:
递减区间:
,
………….6分
(2) 由(1)知:
在
,
,
在
……………….10分
, 使
成立
得:
查看习题详情和答案>>
(由理科第三册§1.3P18习题1.2第1题改编)某工厂规定,如果工人在一个季度里有一个月完成生产任务,可得奖金90元;如果有2个月完成生产任务,可得奖金210元;如果有3个月完成生产任务,可得奖金330元;如果3个月都未完成任务,则没有奖金.已知某工人每个月完成生产任务的概率都是75%.
⑴求这个工人在连续三个季度里恰有两个季度未获得奖金的概率;
⑵求这个工人在一个季度里所得奖金的期望(精确到元).
查看习题详情和答案>>