摘要:(?)求数列中最小项及最小项的值, 南师大附校09高考二轮复习限时训练(八)二解答题
网址:http://m.1010jiajiao.com/timu_id_496705[举报]
数列{an}是公差为d(d>0)的等差数列,且a2是a1与a4的等比中项,设Sn=a1+a3+a5+…+a2n-1(n∈N*).
(1)求证:
+
=2
;
(2)若d=
,令bn=
,{bn}的前n项和为Tn,是否存在整数P、Q,使得对任意n∈N*,都有P<Tn<Q,若存在,求出P的最大值及Q的最小值;若不存在,请说明理由.
查看习题详情和答案>>
(1)求证:
Sn |
Sn+2 |
Sn+1 |
(2)若d=
1 |
4 |
| ||
2n-1 |
数列{bn}定义如下:对于正整数m,bm是使不等式an≥m成立中的所有n中的最小值
(Ⅰ)若正项数列{an}前n和为Sn,是与(an+1)2的等比中项,求an及bn通项;
(Ⅱ)若数列{an}通项为an=pn+q(n∈N*,p>0),是否存在p和q,使得bm=3m+2(m∈N*),如果存在,求出p和q的取值范围,如果不存在,请说明理由.
查看习题详情和答案>>
数列{bn}定义如下:对于正整数m,bm是使不等式an≥m成立中的所有n中的最小值
(Ⅰ)若正项数列{an}前n和为Sn,是与(an+1)2的等比中项,求an及bn通项;
(Ⅱ)若数列{an}通项为an=pn+q(n∈N*,p>0),是否存在p和q,使得bm=3m+2(m∈N*),如果存在,求出p和q的取值范围,如果不存在,请说明理由.
查看习题详情和答案>>
(Ⅰ)若正项数列{an}前n和为Sn,是与(an+1)2的等比中项,求an及bn通项;
(Ⅱ)若数列{an}通项为an=pn+q(n∈N*,p>0),是否存在p和q,使得bm=3m+2(m∈N*),如果存在,求出p和q的取值范围,如果不存在,请说明理由.
查看习题详情和答案>>