摘要:所以在[0.1]上递减.在[1.2]上递增.
网址:http://m.1010jiajiao.com/timu_id_49489[举报]
数列{an}是递减的等差数列,{an}的前n项和是sn,且s6=s9,有以下四个结论:
(1)a8=0;(2)当n等于7或8时,sn取最大值;(3)存在正整数k,使sk=0;(4)存在正整数m,使sm=s2m.
写出以上所有正确结论的序号,答:
查看习题详情和答案>>
(1)a8=0;(2)当n等于7或8时,sn取最大值;(3)存在正整数k,使sk=0;(4)存在正整数m,使sm=s2m.
写出以上所有正确结论的序号,答:
①②③④
①②③④
.数列{an}是递减的等差数列,{an}的前n项和是sn,且s6=s9,有以下四个结论:
(1)a8=0;(2)当n等于7或8时,sn取最大值;(3)存在正整数k,使sk=0;(4)存在正整数m,使sm=s2m.
写出以上所有正确结论的序号,答:________.
查看习题详情和答案>>
数列{an}是递减的等差数列,{an}的前n项和是sn,且s6=s9,有以下四个结论:
(1)a8=0;(2)当n等于7或8时,sn取最大值;(3)存在正整数k,使sk=0;(4)存在正整数m,使sm=s2m.
写出以上所有正确结论的序号,答:______.
查看习题详情和答案>>
(1)a8=0;(2)当n等于7或8时,sn取最大值;(3)存在正整数k,使sk=0;(4)存在正整数m,使sm=s2m.
写出以上所有正确结论的序号,答:______.
数列{an}是递减的等差数列,{an}的前n项和是sn,且s6=s9,有以下四个结论:
(1)a8=0;(2)当n等于7或8时,sn取最大值;(3)存在正整数k,使sk=0;(4)存在正整数m,使sm=s2m.
写出以上所有正确结论的序号,答: . 查看习题详情和答案>>
(1)a8=0;(2)当n等于7或8时,sn取最大值;(3)存在正整数k,使sk=0;(4)存在正整数m,使sm=s2m.
写出以上所有正确结论的序号,答: . 查看习题详情和答案>>
仔细阅读下面问题的解法:
设A=[0,1],若不等式21-x-a>0在A上有解,求实数a的取值范围.
解:由已知可得 a<21-x
令f(x)=21-x,不等式a<21-x在A上有解,
∴a<f(x)在A上的最大值
又f(x)在[0,1]上单调递减,f(x)max=f(0)=2
∴a<2即为所求.
学习以上问题的解法,解决下面的问题:
(1)已知函数f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函数及反函数的定义域A;
(2)对于(1)中的A,设g(x)=
x∈A,试判断g(x)的单调性;(不证)
(3)又若B={x|
>2x+a-5},若A∩B≠Φ,求实数a的取值范围.
查看习题详情和答案>>
设A=[0,1],若不等式21-x-a>0在A上有解,求实数a的取值范围.
解:由已知可得 a<21-x
令f(x)=21-x,不等式a<21-x在A上有解,
∴a<f(x)在A上的最大值
又f(x)在[0,1]上单调递减,f(x)max=f(0)=2
∴a<2即为所求.
学习以上问题的解法,解决下面的问题:
(1)已知函数f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函数及反函数的定义域A;
(2)对于(1)中的A,设g(x)=
10-x |
10+x |
(3)又若B={x|
10-x |
10+x |