网址:http://m.1010jiajiao.com/timu_id_492798[举报]
一、填空题 (每题5分)
1) 2) 3)0 4) 5) 6) 7)②④ 8) 9) 10) 11)7
二、选择题(每题5分)
12、A 13、B 14、D 15、D
三、解答题
16、16、
(1)因为,所以∠BCA(或其补角)即为异面直线与所成角 -------(3分)
∠ABC=90°, AB=BC=1,所以, -------(2分)
即异面直线与所成角大小为。 -------(1分)
(2)直三棱柱ABC-A1B
中,AB=BC=1得到,中,得到, -------(2分)
所以 -------(2分)
17、 -------(1分)
= -------(1分)
= -------(1分)
若为其图象对称中心的横坐标,即=0, -------(1分)
, -------(1分)
解得: -------(1分)
(2), -------(2分)
即,而,所以。 -------(2分)
,, -------(2分)
所以 ------(2分)
18、,顾客得到的优惠率是。 -------(5分)
(2)、设商品的标价为x元,则500≤x≤800 ----- -(2分)
消费金额: 400≤0.8x≤640
由题意可得:
(1)≥ 无解 ------(3分)
或(2) ≥ 得:625≤x≤750 ------(3分)
因此,当顾客购买标价在元内的商品时,可得到不小于的优惠率。------(1分)
19、(1)y=? =(2x-b)+(b+1)=2x+1 -----(1分)
与轴的交点为,所以; -----(1分)
所以,即, -----(1分)
因为在上,所以,即 -----(1分)
(2)设 (),
即 () ----(1分)
(A)当时,
----(1分)
==,而,所以 ----(1分)
(B)当时, ----(1分)
= =, ----(1分)
而,所以 ----(1分)
因此() ----(1分)
(3)假设,使得 ,
(A)为奇数
(一)为奇数,则为偶数。则,。则,解得:与矛盾。 ----(1分)
(二)为偶数,则为奇数。则,。则,解得:(是正偶数)。 ----(1分)
(B)为偶数
(一)为奇数,则为奇数。则,。则,解得:(是正奇数)。 ----(1分)
(二)为偶数,则为偶数。则,。则,解得:与矛盾。 ----(1分)
由此得:对于给定常数m(),这样的总存在;当是奇数时,;当是偶数时,。 ----(1分)
20、(1)解法(A):点P与点F(2,0)的距离比它到直线+4=0的距离小2,所以点P与点F(2,0)的距离与它到直线+2=0的距离相等。 ----(1分)
由抛物线定义得:点在以为焦点直线+2=0为准线的抛物线上, ----(1分)
抛物线方程为。 ----(2分)
解法(B):设动点,则。当时,,化简得:,显然,而,此时曲线不存在。当时,,化简得:。
(2),
,
, ----(1分)
,
,即,, ----(2分)
直线为,所以 ----(1分)
----(1分)
由(a)(b)得:直线恒过定点。 ----(1分)
1、(逆命题)如果直线,且与抛物线相交于A、B两点,O为坐标原点。求证:OA⊥OB (评分:提出问题得1分,解答正确得1分)
(若,求证:?=0,得分相同)
2、(简单推广命题)如果直线L与抛物线=2px(p>0)相交于A、B两点,且OA⊥OB。求证:直线L过定点(2p,0)
或:它的逆命题(评分:提出问题得2分,解答正确得1分)
3、(类比)
3.1(1)如果直线L与椭圆+=1(a>b>0)相交于A、B两点,M是其右顶点,当MA⊥MB。求证:直线L过定点(,0)
3.1(2)如果直线L与椭圆+=1(a>b>0)相交于A、B两点,M是其左顶点,当MA⊥MB。求证:直线L过定点(,0)
3.1(3)或它的逆命题
3.2(1)如果直线L与双曲线-=1(a>0,b>0)相交于A、B两点,M是其右顶点,当MA⊥MB。求证:直线L过定点(,0)(a≠b)
3.2(2)如果直线L与双曲线-=1(a>0,b>0)相交于A、B两点,M是其左顶点,当MA⊥MB。求证:直线L过定点(,0)(a≠b)
3.2(3)或它的逆命题
(评分:提出问题得3分,解答正确得3分)
4、(再推广)
直角顶点在圆锥曲线上运动
如:如果直线L与抛物线=2px(p>0)相交于A、B两点,P是抛物线上一定点(,),且PA⊥PB。求证:直线L过定点(+2p,-)
(评分:提出问题得4分,解答正确得3分)
5、(再推广)
如果直线L与抛物线=2px(p>0)相交于A、B两点,P是抛物线上一定点(,),PA与PB的斜率乘积是常数m。求证:直线L过定点(-,-)
(评分:提出问题得5分,解答正确得4分)
或?为常数
顶点在圆锥曲线上运动并把直角改为一般定角或OA与OB的斜率乘积是常数或?为常数
(本题16分,第(1)小题4分;第(2)小题6分;第(3)小题6分)
已知数列满足:,(),数列(),
数列().
(1)证明数列是等比数列;
(2)求数列的通项公式;
(3)是否存在数列的不同项(),使之成为等差数列?若存在请求出这样的
不同项();若不存在,请说明理由.
查看习题详情和答案>>(本题满分16分,第(1)小题4分,第(2)小题8分,第(3)小题4分)
已知椭圆的左右焦点分别为,短轴两个端点为,且四边形是边长为2的正方形。
(1)求椭圆方程;
(2)若分别是椭圆长轴的左右端点,动点满足,连接,交椭圆于点。证明:为定值;
(3)在(2)的条件下,试问轴上是否存在异于点的定点,使得以为直径的圆恒过直线的交点,若存在,求出点的坐标;若不存在,请说明理由。
查看习题详情和答案>>(本题满分16分,第(1)小题4分,第(2)小题6分,第(2)小题6分)
在平行四边形中,已知过点的直线与线段分别相交于点。若。
(1)求证:与的关系为;
(2)设,定义在上的偶函数,当时,且函数图象关于直线对称,求证:,并求时的解析式;
(3)在(2)的条件下,不等式在上恒成立,求实数的取值范围。
查看习题详情和答案>>