摘要:(2) 当(0,1]时, 若的图象上任意一点处的切线的倾斜角为,求当时的取值范围.
网址:http://m.1010jiajiao.com/timu_id_49233[举报]
一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有 一项是符合题目要求的。
题号
1
2
3
4
5
6
7
8
9
10
答案
二、填空题:(本大题共5个小题,每小题5分,共25分,)
11. 12. 13. 14. 15.
三、解答题:
已知函数
.
(1)若y=f(x)在x=1处的极值为
,求y=f(x)的解析式并确定其单调区间;
(2)当x∈(0,1]时,若y=f(x)的图象上任意一点处的切线的倾斜角为θ,求当
时a的取值范围.
查看习题详情和答案>>
(1)若y=f(x)在x=1处的极值为
(2)当x∈(0,1]时,若y=f(x)的图象上任意一点处的切线的倾斜角为θ,求当
查看习题详情和答案>>
已知二次函数f(x)满足:①当x=2时有极值;②图象与y轴交点的纵坐标为-4,且在该点处的切线与直线4x+y-4=0平行.
(1)求f(-1)的值;
(2)若m∈R,求函数y=F(xlnx+m),x∈[1,e]的最小值;
(3)若曲线y=f(lnx),x∈(1,+∞)上任意一点处的切线的斜率恒大于k3-k-4,求k的取值范围.
查看习题详情和答案>>
已知函数f(x)=-x3+
ax2+b.
(1)若y=f(x)在x=1处的极值为
,求y=f(x)的解析式并确定其单调区间;
(2)当x∈(0,1]时,若y=f(x)的图象上任意一点处的切线的倾斜角为θ,求当0≤θ≤
时a的取值范围.
查看习题详情和答案>>
| 1 |
| 2 |
(1)若y=f(x)在x=1处的极值为
| 5 |
| 2 |
(2)当x∈(0,1]时,若y=f(x)的图象上任意一点处的切线的倾斜角为θ,求当0≤θ≤
| π |
| 4 |
已知函数f(x)=mx3+nx2(m、n∈R,m≠0)的图象在(2,f(2))处的切线与x轴平行.
(1)求n,m的关系式并求f(x)的单调减区间;
(2)证明:对任意实数0<x1<x2<1,关于x的方程:f′(x)-
=0在(x1,x2)恒有实数解
(3)结合(2)的结论,其实我们有拉格朗日中值定理:若函数f(x)是在闭区间[a,b]上连续不断的函数,且在区间(a,b)内导数都存在,则在(a,b)内至少存在一点x0,使得f′(x0)=
.如我们所学过的指、对数函数,正、余弦函数等都符合拉格朗日中值定理条件.试用拉格朗日中值定理证明:
当0<a<b时,
<ln
<
(可不用证明函数的连续性和可导性).
查看习题详情和答案>>
(1)求n,m的关系式并求f(x)的单调减区间;
(2)证明:对任意实数0<x1<x2<1,关于x的方程:f′(x)-
| f(x2)-f(x1) |
| x2-x1 |
(3)结合(2)的结论,其实我们有拉格朗日中值定理:若函数f(x)是在闭区间[a,b]上连续不断的函数,且在区间(a,b)内导数都存在,则在(a,b)内至少存在一点x0,使得f′(x0)=
| f(b)-f(a) |
| b-a |
当0<a<b时,
| b-a |
| b |
| b |
| a |
| b-a |
| a |