网址:http://m.1010jiajiao.com/timu_id_491241[举报]
一、选择题(每小题5分,共60分)
1.A 2.C 3.C 4.D 5.B 6.A 7.D 8.D 9.C 10.B 11.B 12.D
二、填空题(每小题4分,共16分)
13. 14.3825 15.1 16.0ⅠⅡ
三、解答题
17.解:(Ⅰ)在中,由及余弦定理得
而,则;
(Ⅱ)由及正弦定理得,
而,则
于是,
由得,当即时,。
18解:(Ⅰ)基本事件共有36个,方程有正根等价于,即。设“方程有两个正根”为事件,则事件包含的基本事件为共4个,故所求的概率为;
(Ⅱ)试验的全部结果构成区域,其面积为
设“方程无实根”为事件,则构成事件的区域为
,其面积为
故所求的概率为
19.解:(Ⅰ)证明:由平面及得平面,则
而平面,则,又,则平面,
又平面,故。
(Ⅱ)在中,过点作于点,则平面.
由已知及(Ⅰ)得.
故
(Ⅲ)在中过点作交于点,在中过点作交于点,连接,则由得
由平面平面,则平面
再由得平面,又平面,则平面.
故当点为线段上靠近点的一个三等分点时,平面.
20.解:(Ⅰ)设等差数列的公差为,
则,
(Ⅱ)由
得,故数列适合条件①
而,则当或时,有最大值20
即,故数列适合条件②.
综上,故数列是“特界”数列。
21.证明:消去得
设点,则,
由,,即
化简得,则
即,故
(Ⅱ)解:由
化简得
由得,即
故椭圆的长轴长的取值范围是。
22.解:(Ⅰ),由在区间上是增函数
则当时,恒有,
即在区间上恒成立。
由且,解得.
(Ⅱ)依题意得
则,解得
而
故在区间上的最大值是。
(Ⅲ)若函数的图象与函数的图象恰有3个不同的交点,
即方程恰有3个不等的实数根。
而是方程的一个实数根,则
方程有两个非零实数根,
则即且.
故满足条件的存在,其取值范围是.
A、120 | B、60 | C、12 | D、6 |
在1000个数据中,用适当的方法抽取50个体为样本进行统计,频数分布表中54.5~57.5这一组的频率为0.12,估计总体数据落在54.5~57.5之间的约有_____个.
- A.120
- B.60
- C.12
- D.6
把容量为1000的某个样本数据分为10组,并填写频率分布表.若前3组的频数依次构成公差为50的等差数列,且后7组的频率之和是0.79,则前3组中频率最小的一组的频数是
- A.24
- B.30
- C.16
- D.20
①[0,30),②[30,60),③[60,90),④[90,120),
⑤[120,150),⑥[150,180),⑦[180,210),⑧[210,240),
得到频率分布直方图如下.已知抽取的学生中每天晚上有效学习时间少于60分钟的人数为5人;
(1)求n的值并补全下列频率分布直方图;
(2)如果把“学生晚上有效时间达到两小时”作为是否充分利用时间的标准,对抽取的n名学生,完成下列2×2列联表:
利用时间充分 | 利用时间不充分 | 总计 | |
走读生 | 50 | 25 | 75 |
住宿生 | 10 | 15 | 25 |
总计 | 60 | 40 | 100 |
参考公式:K2=
n(ad-bc)2 |
(a+b)(c+d)(a+c)(b+d) |
参考列表:
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |