摘要:设一批产品由a件次品.b件正品组成.不放回抽取n件时.其中次品数ξ服从超几何分布.若放回式抽取.则其中次品数的分布列可如下求得:把个产品编号.则抽取n次共有个可能结果.等可能:含个结果.故.即-.[我们先为k个次品选定位置.共种选法,然后每个次品位置有a种选法.每个正品位置有b种选法] 可以证明:当产品总数很大而抽取个数不多时..因此二项分布可作为超几何分布的近似.无放回抽样可近似看作放回抽样.
网址:http://m.1010jiajiao.com/timu_id_491022[举报]
考察等式:(*),其中n、m、r∈N*,r≤m<n且r≤n-m.某同学用概率论方法证明等式(*)如下:
设一批产品共有n件,其中m件是次品,其余为正品.现从中随机取出r件产品,
记事件Ak={取到的r件产品中恰有k件次品},则,k=0,1,2,…,r.
显然A,A1,…,Ar为互斥事件,且A∪A1∪…∪Ar=Ω(必然事件),
因此1=P(Ω)=P(A)+P(A1)+…P(Ar)=,
所以,即等式(*)成立.
对此,有的同学认为上述证明是正确的,体现了偶然性与必然性的统一;但有的同学对上述证明方法的科学性与严谨性提出质疑.现有以下四个判断:
①等式(*)成立 ②等式(*)不成立 ③证明正确 ④证明不正确
试写出所有正确判断的序号 . 查看习题详情和答案>>
设一批产品共有n件,其中m件是次品,其余为正品.现从中随机取出r件产品,
记事件Ak={取到的r件产品中恰有k件次品},则,k=0,1,2,…,r.
显然A,A1,…,Ar为互斥事件,且A∪A1∪…∪Ar=Ω(必然事件),
因此1=P(Ω)=P(A)+P(A1)+…P(Ar)=,
所以,即等式(*)成立.
对此,有的同学认为上述证明是正确的,体现了偶然性与必然性的统一;但有的同学对上述证明方法的科学性与严谨性提出质疑.现有以下四个判断:
①等式(*)成立 ②等式(*)不成立 ③证明正确 ④证明不正确
试写出所有正确判断的序号 . 查看习题详情和答案>>
(2010•福建模拟)考察等式:
+
+…+
=
(*),其中n、m、r∈N*,r≤m<n且r≤n-m.某同学用概率论方法证明等式(*)如下:
设一批产品共有n件,其中m件是次品,其余为正品.现从中随机取出r件产品,
记事件Ak={取到的r件产品中恰有k件次品},则P(Ak)=
,k=0,1,2,…,r.
显然A0,A1,…,Ar为互斥事件,且A0∪A1∪…∪Ar=Ω(必然事件),
因此1=P(Ω)=P(A0)+P(A1)+…P(Ar)=
,
所以
+
+…+
=
,即等式(*)成立.
对此,有的同学认为上述证明是正确的,体现了偶然性与必然性的统一;但有的同学对上述证明方法的科学性与严谨性提出质疑.现有以下四个判断:
①等式(*)成立 ②等式(*)不成立 ③证明正确 ④证明不正确
试写出所有正确判断的序号
查看习题详情和答案>>
C | 0 m |
C | r n-m |
C | 1 m |
C | r-1 n-m |
C | r m |
C | 0 n-m |
C | r n |
设一批产品共有n件,其中m件是次品,其余为正品.现从中随机取出r件产品,
记事件Ak={取到的r件产品中恰有k件次品},则P(Ak)=
| ||||
|
显然A0,A1,…,Ar为互斥事件,且A0∪A1∪…∪Ar=Ω(必然事件),
因此1=P(Ω)=P(A0)+P(A1)+…P(Ar)=
| ||||||||||||
|
所以
C | 0 m |
C | r n-m |
C | 1 m |
C | r-1 n-m |
C | r m |
C | 0 n-m |
C | r n |
对此,有的同学认为上述证明是正确的,体现了偶然性与必然性的统一;但有的同学对上述证明方法的科学性与严谨性提出质疑.现有以下四个判断:
①等式(*)成立 ②等式(*)不成立 ③证明正确 ④证明不正确
试写出所有正确判断的序号
①③
①③
.考察等式:
+
+…+
=
(*),其中n、m、r∈N*,r≤m<n且r≤n-m.某同学用概率论方法证明等式(*)如下:
设一批产品共有n件,其中m件是次品,其余为正品.现从中随机取出r件产品,
记事件Ak={取到的r件产品中恰有k件次品},则P(Ak)=
,k=0,1,2,…,r.
显然A0,A1,…,Ar为互斥事件,且A0∪A1∪…∪Ar=Ω(必然事件),
因此1=P(Ω)=P(A0)+P(A1)+…P(Ar)=
,
所以
+
+…+
=
,即等式(*)成立.
对此,有的同学认为上述证明是正确的,体现了偶然性与必然性的统一;但有的同学对上述证明方法的科学性与严谨性提出质疑.现有以下四个判断:
①等式(*)成立 ②等式(*)不成立 ③证明正确 ④证明不正确
试写出所有正确判断的序号______.
查看习题详情和答案>>
C | 0m |
C | rn-m |
C | 1m |
C | r-1n-m |
C | rm |
C | 0n-m |
C | rn |
设一批产品共有n件,其中m件是次品,其余为正品.现从中随机取出r件产品,
记事件Ak={取到的r件产品中恰有k件次品},则P(Ak)=
| ||||
|
显然A0,A1,…,Ar为互斥事件,且A0∪A1∪…∪Ar=Ω(必然事件),
因此1=P(Ω)=P(A0)+P(A1)+…P(Ar)=
| ||||||||||||
|
所以
C | 0m |
C | rn-m |
C | 1m |
C | r-1n-m |
C | rm |
C | 0n-m |
C | rn |
对此,有的同学认为上述证明是正确的,体现了偶然性与必然性的统一;但有的同学对上述证明方法的科学性与严谨性提出质疑.现有以下四个判断:
①等式(*)成立 ②等式(*)不成立 ③证明正确 ④证明不正确
试写出所有正确判断的序号______.
考察等式:
(*)
其中n,m,r∈N*,r≤m<n且r≤n-m,
某同学用概率论方法证明等式(*)如下:设一批产品共有n件,其中m件是次品,其余为正品,现从中随机取出r件产品,记事件Ak={取到的r件产品中恰有k件次品},则,k=0,1,…,r。显然A0,A1,…,Ar为互斥事件,且(必然事件),因此,
所以,,即等式(*)成立。
对此,有的同学认为上述证明是正确的,体现了偶然性与必然性的统一;但有的同学对上述证明方法的科学性与严谨性提出质疑.
现有以下四个判断:①等式(*)成立;②等式(*)不成立;③证明正确;④证明不正确,试写出所有正确判断的序号( )。
查看习题详情和答案>>
(*)
其中n,m,r∈N*,r≤m<n且r≤n-m,
某同学用概率论方法证明等式(*)如下:设一批产品共有n件,其中m件是次品,其余为正品,现从中随机取出r件产品,记事件Ak={取到的r件产品中恰有k件次品},则,k=0,1,…,r。显然A0,A1,…,Ar为互斥事件,且(必然事件),因此,
所以,,即等式(*)成立。
对此,有的同学认为上述证明是正确的,体现了偶然性与必然性的统一;但有的同学对上述证明方法的科学性与严谨性提出质疑.
现有以下四个判断:①等式(*)成立;②等式(*)不成立;③证明正确;④证明不正确,试写出所有正确判断的序号( )。