摘要:A.1 B. C.0 D.不存在
网址:http://m.1010jiajiao.com/timu_id_49058[举报]
一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有 一项是符合题目要求的。
题号
1
2
3
4
5
6
7
8
9
10
答案
二、填空题:(本大题共5个小题,每小题5分,共25分,)
11. 12. 13. 14. 15.
三、解答题:
已知A、D分别为椭圆E:
+
=1(a>b>0)的左顶点与上顶点,椭圆的离心率e=
,F1、F2为椭圆的左、右焦点,点P是线段AD上的任一点,且
.
的最大值为1.
(1)求椭圆E的方程.
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且OA⊥OB(O为坐标原点),若存在,求出该圆的方程;若不存在,请说明理由.
(3)设直线l与圆C:x2+y2=R2(1<R<2)相切于A1,且l与椭圆E有且仅有一个公共点B1,当R为何值时,|A1B1|取最大值?并求最大值. 查看习题详情和答案>>
| x2 |
| a2 |
| y2 |
| b2 |
| ||
| 2 |
| PF1 |
| PF2 |
(1)求椭圆E的方程.
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且OA⊥OB(O为坐标原点),若存在,求出该圆的方程;若不存在,请说明理由.
(3)设直线l与圆C:x2+y2=R2(1<R<2)相切于A1,且l与椭圆E有且仅有一个公共点B1,当R为何值时,|A1B1|取最大值?并求最大值. 查看习题详情和答案>>
已知A、B分别是直线y=
x和y=-
x上的两个动点,线段AB的长为2
,D是AB的中点.
(1)求动点D的轨迹C的方程;
(2)过点N(1,0)作与x轴不垂直的直线l,交曲线C于P、Q两点,若在线段ON上存在点M(m,0),使得以MP、MQ为邻边的平行四边形是菱形,试求m的取值范围. 查看习题详情和答案>>
| ||
| 3 |
| ||
| 3 |
| 3 |
(1)求动点D的轨迹C的方程;
(2)过点N(1,0)作与x轴不垂直的直线l,交曲线C于P、Q两点,若在线段ON上存在点M(m,0),使得以MP、MQ为邻边的平行四边形是菱形,试求m的取值范围. 查看习题详情和答案>>