摘要: 常用公式:①1+2+3 -+n =
网址:http://m.1010jiajiao.com/timu_id_490296[举报]
21.某公司全年的纯利润为b元,其中一部分作为奖金发给n位职工.奖金分配方案如下:首先将职工按工作业绩(工作业绩均不相同)从大到小.由1至n排序,第1位职工得奖金元,然后再将余额除以n发给第2位职工,按此方法将奖金逐一发给每位职工.并将最后剩余部分作为公司发展基金.
(1)设ak(1≤k≤n)为第k位职工所得奖金额,试求a2、a3,并用k、n和b表示ak ;(不必证明)
(2)证明a k>a k+1(k=1,2,…,n-1),并解释此不等式关于分配原则的实际意义;
(3)发展基金与n和b有关,记为Pn(b).对常数b,当n变化时,求Pn(b).
查看习题详情和答案>>
(1)选修4-2:矩阵与变换
若二阶矩阵M满足.
(Ⅰ)求二阶矩阵M;
(Ⅱ)把矩阵M所对应的变换作用在曲线3x2+8xy+6y2=1上,求所得曲线的方程.
(2)选修4-4:坐标系与参数方程
已知在直角坐标系xOy中,曲线C的参数方程为(t为非零常数,θ为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l的方程为.
(Ⅰ)求曲线C的普通方程并说明曲线的形状;
(Ⅱ)是否存在实数t,使得直线l与曲线C有两个不同的公共点A、B,且(其中O为坐标原点)?若存在,请求出;否则,请说明理由.
(3)选修4-5:不等式选讲
已知函数f(x)=|x-2|+|x-4|的最小值为m,实数a,b,c,n,p,q满足a2+b2+c2=n2+p2+q2=m.
(Ⅰ)求m的值;
(Ⅱ)求证:.
查看习题详情和答案>>
若二阶矩阵M满足.
(Ⅰ)求二阶矩阵M;
(Ⅱ)把矩阵M所对应的变换作用在曲线3x2+8xy+6y2=1上,求所得曲线的方程.
(2)选修4-4:坐标系与参数方程
已知在直角坐标系xOy中,曲线C的参数方程为(t为非零常数,θ为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l的方程为.
(Ⅰ)求曲线C的普通方程并说明曲线的形状;
(Ⅱ)是否存在实数t,使得直线l与曲线C有两个不同的公共点A、B,且(其中O为坐标原点)?若存在,请求出;否则,请说明理由.
(3)选修4-5:不等式选讲
已知函数f(x)=|x-2|+|x-4|的最小值为m,实数a,b,c,n,p,q满足a2+b2+c2=n2+p2+q2=m.
(Ⅰ)求m的值;
(Ⅱ)求证:.
查看习题详情和答案>>
某公司全年的利润为b元,其中一部分作为奖金发给n位职工,奖金分配方案如下:首先将职工按工作业绩(工作业绩均不相同)从大到小,由1到n排序,第一位职工得奖金元,然后再将余额除以n发给第2位职工,按此方法将奖金逐一发给每位职工,并将最后剩余部分作为公司发展基金.
(1)设ak(1≤k≤n)为第k位职工所得奖金额,试求a2、a3,并用k、n和b表示ak(不必证明);
(2)证明ak>ak+1(k=1,2,…,n-1),并解释此不等式关于分配原则的实际意义;
(3)发展基金与n和b有关,记为Pn(b),对常数b,当n变化时,求Pn(b)
查看习题详情和答案>>