摘要:小车的位移: ④ 又:s­1-s2=L ⑤

网址:http://m.1010jiajiao.com/timu_id_487337[举报]

一、选择题

1、B    2、C  3、AC    4、D    5、BC  6BC  

7、A  解析:由题意知,地面对物块A的摩擦力为0,对物块B的摩擦力为

对A、B整体,设共同运动的加速度为a,由牛顿第二定律有:

对B物体,设A对B的作用力为,同理有

联立以上三式得:

 8、B    9、A       10、B

二、实验题

11、⑴ 不变    ⑵ AD  ⑶ABC  ⑷某学生的质量

三、计算题

12、解析:由牛顿第二定律得:mg-f=ma

                         

    抛物后减速下降有:

                          Δv=a/Δt

                    解得:

 

13、解析:人相对木板奔跑时,设人的质量为,加速度为,木板的质量为M,加速度大小为,人与木板间的摩擦力为,根据牛顿第二定律,对人有:

(2)设人从木板左端开始距到右端的时间为,对木板受力分析可知:,方向向左;

由几何关系得:,代入数据得:

(3)当人奔跑至右端时,人的速度,木板的速度;人抱住木柱的过程中,系统所受的合外力远小于相互作用的内力,满足动量守恒条件,有:

 (其中为二者共同速度)

代入数据得,方向与人原来运动方向一致;

以后二者以为初速度向右作减速滑动,其加速度大小为,故木板滑行的距离为

  

14. 解析:(1)从图中可以看出,在t=2s内运动员做匀加速直线运动,其加速度大小为

 =8m/s2

设此过程中运动员受到的阻力大小为f,根据牛顿第二定律,有mg-f=ma

得           f=m(g-a)=80×(10-8)N=160N

(2)从图中估算得出运动员在14s内下落了

                     39.5×2×2m158 m

根据动能定理,有

所以有    =(80×10×158-×80×62)J≈1.25×105J

(3)14s后运动员做匀速运动的时间为

              s=57s

运动员从飞机上跳下到着地需要的总时间

        t=t+t′=(14+57)s=71s

15. 13、解析:(1)取竖直向下的方向为正方向。

   球与管第一次碰地前瞬间速度,方向向下。

   碰地的瞬间管的速度,方向向上;球的速度,方向向下,

   球相对于管的速度,方向向下。

   碰后,管受重力及向下的摩擦力,加速度a=2g,方向向下,

   球受重力及向上的摩擦力,加速度a=3g,方向向上,

球相对管的加速度a=5g,方向向上。

取管为参照物,则球与管相对静止前,球相对管下滑的距离为:

要满足球不滑出圆管,则有

(2)设管从碰地到它弹到最高点所需时间为t1(设球与管在这段时间内摩擦力方向不变),则:

设管从碰地到与球相对静止所需时间为t2

因为t1 >t2,说明球与管先达到相对静止,再以共同速度上升至最高点,设球与管达到相对静止时离地高度为h’,两者共同速度为v’,分别为:

然后球与管再以共同速度v’作竖直上抛运动,再上升高度h’’为

因此,管上升最大高度H’=h’+h’’=

(3)当球与管第二次共同下落时,离地高为,球位于距管顶处,同题(1)可解得在第二次反弹中发生的相对位移。

 

16. 解析:(1)小球最后静止在水平地面上,在整个运动过程中,空气阻力做功使其机械能减少,设小球从开始抛出到最后静止所通过的路程S,有 fs=mv02/2       已知 f =0.6mg    代入算得: s=  5 v02/(6g)                

    (2)第一次上升和下降:设上升的加速度为a11.上升所用的时间为t11,上升的最大高度为h1;下降的加速度为a12,下降所用时间为t12

    上升阶段:F=mg+f =1.6 mg

    由牛顿第二定律:a11 =1.6g           

    根据:vt=v0-a11t11,  vt=0

    得:v0=l.6gt11, 所以t11= 5 v0/(8g)              

    下降阶段:a12=(mg-f)/m= 0.4g          

    由h1= a11t112/2  和 h2= a12t122/2      得:t12=2t11=5 v0/(4g)          

    所以上升和下降所用的总时间为:T1=t11+t12=3t11=  15 v0/(8g)        

    第二次上升和下降,以后每次上升的加速度都为a11,下降的加速度都为a12;设上升的初速度为v2,上升的最大高度为h2,上升所用时间为t21,下降所用时间为t22

    由v22=2a12h1  和v02=2a11h1          得  v2= v0/2           

    上升阶段:v2=a11t21     得:t21= v2/ a11=  5 v0/(16g)       

    下降阶段:  由  h2= a11t212/2   和h2= a12t222/2        得t22=2t21       

 所以第二次上升和下降所用总时间为:T2=t21+t22=3t21=15 v0/(16g)= T1/2    

    第三次上升和下降,设上升的初速度为v3,上升的最大高度为h3,上升所用时间为t31,下降所用时间为t32

    由 v32=2a11h   和v22=2a12h         得:  v3= v2/2  = v0/4

    上升阶段:v3=a11t3l,得t31= 5 v0/(32g)    

    下降阶段:由 h3= a11t312/2       和h3= a12t322/2            得:t32=2t31    

    所以第三次上升和下降所用的总时间为:T3=t31+t32=3t31=15 v0/(32g)= T1/4       

    同理,第n次上升和下降所用的总时间为: Tn        

    所以,从抛出到落地所用总时间为: T=15 v0/(4g)

 

I.(1)一条纸带与做匀加速直线运动的小车相连,通过打点计时器打下一系列点,从打下的点中选取若干计数点,如图1中A、B、G、D、层所示,纸带上相邻的两个计数点之间有四个点未画出.现测出AB=2.20cm,AC=6.40cm,AD=12.58cm,AE=20.80cm,已知打点计时器电源频率为50Hz,请回答下列问题:
①打D点时,小车的速度大小为
0.72
0.72
m/s;
②小车运动的加速度大小为
2.0
2.0
m/s2.(①②均保留两熊有效数字)

(2)在“探究加速度与物体质量、物体受力的关系”活动中,某小组设计了如图2所示的实验装置,图中上下两层水平轨道表面光滑,两小车前端系上细线,细线跨过滑轮并挂上砝码盘,两小车尾部细线连到控制装置上,实验时通过控制装置使两小车同时开始运动,然后同时停止,本探究实验是通过比较两小车的位移大小来比较小车加速度的大小.能进行这样的比较.是因为?
小车做初速度为零的匀加速运动,运动时间相对,加速度与位移成正比
小车做初速度为零的匀加速运动,运动时间相对,加速度与位移成正比

II.有一段粗细均匀的导体,现要用实验的方法测定这种导体材料的电阻率,若已测得其长度和横截面积,还需要测出它的电阻值Rx
(1)若已知这段导体的电阻约为30Ω,要尽量精确的测量其电阻值,除了需要导线、开关以外,在以下备选器材中应选用的是
ABEF
ABEF
.(只填写字母代号)
A.电池(电动势14V、内阻可忽略不计)
B.电流表(量程0~0.6A,内阻约0.12Ω)
C.电流表(量程0~100m A,内阻约12Ω)
D.电压表(量程0~3V,内阻约3kΩ)
E.电压表(量程0~15V,内阻约15kΩ)
F.滑动变阻器(0~10Ω,允许最大电流2.0A)
G.滑动变阻器(0~500Ω,允许最大电流0.5A)
(2)请在答题卡方框中画出测这段导体电阻的实验电路图(要求直接测量的变化范围尽可能大一些).
(3)根据测量数据画出该导体的伏安特性曲线如图3所示,发现MN段明显向上弯曲.若实验的操作、读数、记录、描点和绘图等过程均正确无误,则出现这一弯曲现象的主要原因是
伴随导体中的电流增大,温度升高,电阻率增大,电阻增大
伴随导体中的电流增大,温度升高,电阻率增大,电阻增大
查看习题详情和答案>>
(1)建筑、桥梁工程中所用的金属材料(如钢筋钢梁等)在外力作用下会伸长,其伸长量不仅与和拉力的大小有关,还和金属材料的横截面积有关.人们发现对同一种金属,其所受的拉力与其横截面积的比值跟金属材料的伸长量与原长的比值的比是一个常数,这个常数叫做杨氏模量.用E表示,即:E=
F
S
 )
△L
L
 )
;某同学为探究其是否正确,根据下面提供的器材:不同粗细不同长度的同种金属丝;不同质量的重物;螺旋测微器; 游标卡尺;米尺;天平;固定装置等.设计的实验如图1所示.
该同学取一段金属丝水平固定在固定装置上,将一重物挂在金属丝的中点,其中点发生了一个微小下移h.用螺旋测微器测得金属丝的直径为D;用游标卡尺测得微小下移量为h;用米尺测得金属丝的原长为2L;用天平测出重物的质量m(不超量程).
①在一次测量中:
a.螺旋测微器如图2甲所示,其示数为
3.853
3.853
mm;
b.游标卡尺如图2乙所示,其示数为
11.14
11.14
mm;

②用以上测量量的字母表示该金属的杨氏模量的表达式为:E=
2mgL
L2+h2
πD2h(
L2+h2
-L)
2mgL
L2+h2
πD2h(
L2+h2
-L)

(2)在探究“牛顿第二定律”时,某小组设计双车位移比较法来探究加速度与力的关系.实验装置如图3所示,将轨道分上下双层排列,两小车后的刹车线穿过尾端固定板,由安装在后面的刹车系统同时进行控制(未画出刹车系统).通过改变砝码盘中的砝码来改变拉力大小.通过比较两小车的位移来比较两小车的加速度大小,是因为位移与加速度的关系式为
s=
1
2
at2
s=
1
2
at2
.已知两车质量均为200g,实验数据如表中所示:
实验次数 小车 拉力F/N 位移s/cm 拉力比F/F 位移比s/s
1 0.1 22.3 0.50 0.51
0.2 43.5
2 0.2 29.0 0.67 0.67
0.3 43.0
3 0.3 41.0 0.75 0.74
0.4 55.4
分析表中数据可得到结论:
在实验误差范围内当小车质量保持不变时,由于s∝F说明a∝F;
在实验误差范围内当小车质量保持不变时,由于s∝F说明a∝F;

该装置中的刹车系统的作用是
控制两车同时运动和同时停止;
控制两车同时运动和同时停止;

为了减小实验的系统误差,你认为还可以进行哪些方面的改进?(只需提出一个建议即可)
调整两木板平衡摩擦力(或使砝码盘和砝码的总质量远小于小车的质量等).
调整两木板平衡摩擦力(或使砝码盘和砝码的总质量远小于小车的质量等).
查看习题详情和答案>>
( I)在“探究加速度与物体质量、物体受力的关系”实验中,某小组设计了如图所示的实验装置.图中上、下两层水平轨道表面光滑,两小车前端系上细线,细线跨过定滑轮并挂上砝码盘,两小车尾部细线连到控制装置上,实验时通过控制装置使小车同时开始运动,然后同时停止.
(1)在安装实验装置时,应调整滑轮的高度,使
细线与轨道平行
细线与轨道平行

(2)在实验时,为减小系统误差,应使砝码盘和砝码的总质量
远小于
远小于
小车的质量(选填“远大于”、“远小于”、“等于”).
(3)本实验通过比较两小车的位移来比较小车加速度的大小,能这样比较,是因为
两小车都从静止开始加速相同的时间,根据s=
1
2
at2
可得,s与a成正比
两小车都从静止开始加速相同的时间,根据s=
1
2
at2
可得,s与a成正比

( II)某同学用如图所示的实验装置验证“力的平行四边形定则”.弹簧测力计A挂于固定点P,下端用细线挂一重物M.弹簧测力计B的一端用细线系于O点,手持另一端向左拉,使结点O静止在某位置.分别读出弹簧测力计A和B的示数,并在贴于竖直木板的白纸上记录O点的位置和拉线的方向.

(1)本实验用的弹簧测力计示数的单位为N,图中A的示数为
3.6
3.6
N.
(2)下列不必要的实验要求是
D
D
(请填写选项前对应的字母).
A.应测量重物M所受的重力
B.弹簧测力计应在使用前校零
C.拉线方向应与木板平面平行
D.改变拉力,进行多次实验,每次都要使O点静止在同一位置
(3)某次实验中,该同学发现弹簧测力计A的指针稍稍超出量程,请您提出两个解决办法.
改变弹簧测力计B的方向,减小重物的质量
改变弹簧测力计B的方向,减小重物的质量
查看习题详情和答案>>

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网