摘要:. 当时.. 不合题意. 15分
网址:http://m.1010jiajiao.com/timu_id_486527[举报]
已知函数 R).
(Ⅰ)若 ,求曲线 在点 处的的切线方程;
(Ⅱ)若 对任意 恒成立,求实数a的取值范围.
【解析】本试题主要考查了导数在研究函数中的运用。
第一问中,利用当时,.
因为切点为(), 则,
所以在点()处的曲线的切线方程为:
第二问中,由题意得,即即可。
Ⅰ)当时,.
,
因为切点为(), 则,
所以在点()处的曲线的切线方程为:. ……5分
(Ⅱ)解法一:由题意得,即. ……9分
(注:凡代入特殊值缩小范围的均给4分)
,
因为,所以恒成立,
故在上单调递增, ……12分
要使恒成立,则,解得.……15分
解法二: ……7分
(1)当时,在上恒成立,
故在上单调递增,
即. ……10分
(2)当时,令,对称轴,
则在上单调递增,又
① 当,即时,在上恒成立,
所以在单调递增,
即,不合题意,舍去
②当时,, 不合题意,舍去 14分
综上所述:
查看习题详情和答案>>