摘要:(Ⅱ)取BE的中点G连接FG.由EA=BA知AC⊥EB又EF=FB=.故FG⊥EB.所以∠AGF即为二面角A-EB-F的平面角.
网址:http://m.1010jiajiao.com/timu_id_481019[举报]
如图,四边形ABCD为平行四边形,四边形ADEF是正方形,且BD⊥平面CDE,H是BE的中点,G是AE,DF的交点.
(1)求证:GH∥平面CDE;
(2)求证:面ADEF⊥面ABCD.
查看习题详情和答案>>
如图,在正三棱柱ABC-A1B1C1中,E∈BB1,截面A1EC⊥侧面AC1.
(1)求证:BE=EB1;
(2)若AA1=A1B1;求平面A1EC与平面A1B1C1所成二面角(锐角)的度数.
注意:在下面横线上填写适当内容,使之成为(Ⅰ)的完整证明,并解答(Ⅱ).
(1)证明:在截面A1EC内,过E作EG⊥A1C,G是垂足.
①∵
∴EG⊥侧面AC1;取AC的中点F,连接BF,FG,由AB=BC得BF⊥AC,
②∵
∴BF⊥侧面AC1;得BF∥EG,BF、EG确定一个平面,交侧面AC1于FG.
③∵
∴BE∥FG,四边形BEGF是平行四边形,BE=FG,
④∵
∴FG∥AA1,△AA1C∽△FGC,
⑤∵
∴FG=
AA1=
BB1,即BE=
BB1,故BE=EB1.
查看习题详情和答案>>
(1)求证:BE=EB1;
(2)若AA1=A1B1;求平面A1EC与平面A1B1C1所成二面角(锐角)的度数.
注意:在下面横线上填写适当内容,使之成为(Ⅰ)的完整证明,并解答(Ⅱ).
(1)证明:在截面A1EC内,过E作EG⊥A1C,G是垂足.
①∵
∴EG⊥侧面AC1;取AC的中点F,连接BF,FG,由AB=BC得BF⊥AC,
②∵
∴BF⊥侧面AC1;得BF∥EG,BF、EG确定一个平面,交侧面AC1于FG.
③∵
∴BE∥FG,四边形BEGF是平行四边形,BE=FG,
④∵
∴FG∥AA1,△AA1C∽△FGC,
⑤∵
∴FG=
1 |
2 |
1 |
2 |
1 |
2 |
如图,在正三棱柱ABC-A1B1C1中,E∈BB1,截面A1EC⊥侧面AC1.
(1)求证:BE=EB1;
(2)若AA1=A1B1;求平面A1EC与平面A1B1C1所成二面角(锐角)的度数.
注意:在下面横线上填写适当内容,使之成为(Ⅰ)的完整证明,并解答(Ⅱ).
(1)证明:在截面A1EC内,过E作EG⊥A1C,G是垂足.
①∵______
∴EG⊥侧面AC1;取AC的中点F,连接BF,FG,由AB=BC得BF⊥AC,
②∵______
∴BF⊥侧面AC1;得BF∥EG,BF、EG确定一个平面,交侧面AC1于FG.
③∵______
∴BE∥FG,四边形BEGF是平行四边形,BE=FG,
④∵______
∴FG∥AA1,△AA1C∽△FGC,
⑤∵______
∴,即.
查看习题详情和答案>>
(1)求证:BE=EB1;
(2)若AA1=A1B1;求平面A1EC与平面A1B1C1所成二面角(锐角)的度数.
注意:在下面横线上填写适当内容,使之成为(Ⅰ)的完整证明,并解答(Ⅱ).
(1)证明:在截面A1EC内,过E作EG⊥A1C,G是垂足.
①∵______
∴EG⊥侧面AC1;取AC的中点F,连接BF,FG,由AB=BC得BF⊥AC,
②∵______
∴BF⊥侧面AC1;得BF∥EG,BF、EG确定一个平面,交侧面AC1于FG.
③∵______
∴BE∥FG,四边形BEGF是平行四边形,BE=FG,
④∵______
∴FG∥AA1,△AA1C∽△FGC,
⑤∵______
∴,即.
查看习题详情和答案>>