摘要:如图.已知椭圆以双曲线的焦点为顶点.顶点为焦点.过点的直线与椭圆交于两点..过作直线垂直于轴.交椭圆于另一点.(1) 求椭圆的方程,
网址:http://m.1010jiajiao.com/timu_id_478684[举报]
| x2 |
| a2 |
| y2 |
| b2 |
| ||
| 2 |
| 2 |
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线PF1、PF2的斜率分别为k1、k2,证明k1•k2=1;
(Ⅲ)(此小题仅理科做)是否存在常数λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,求λ的值;若不存在,请说明理由. 查看习题详情和答案>>
如图,已知椭圆
=1(a>b>0)的离心率为
,以该椭圆上的点和椭圆的左、右焦点F1、F2为顶点的三角形的周长为4(
+1),一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D.
![]()
(1)求椭圆和双曲线的标准方程;
(2)设直线PF1、PF2的斜率分别为k1、k2,证明:k1·k2=1;
(3)是否存在常数λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,请说明理由.
查看习题详情和答案>>
如图,已知椭圆
的离心率为
,以该椭圆上的点和椭圆的左右焦点F1、F2为顶点的三角形的周长为
。一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的焦点分别为A、B和C、D。
(Ⅰ)求椭圆和双曲线的标准方程
(Ⅱ)设直线PF1、PF2的斜率分别为k1、k2,证明:k1·k2=1
(Ⅲ)是否存在常数
,使得|AB|+|CD|=
|AB|·|CD|恒成立?若存在,求
的值,若不存在,请说明理由。
![]()
查看习题详情和答案>>