网址:http://m.1010jiajiao.com/timu_id_476619[举报]
,,为常数,离心率为的双曲线:上的动点到两焦点的距离之和的最小值为,抛物线:的焦点与双曲线的一顶点重合。(Ⅰ)求抛物线的方程;(Ⅱ)过直线:(为负常数)上任意一点向抛物线引两条切线,切点分别为、,坐标原点恒在以为直径的圆内,求实数的取值范围。
【解析】第一问中利用由已知易得双曲线焦距为,离心率为,则长轴长为2,故双曲线的上顶点为,所以抛物线的方程
第二问中,为,,,
故直线的方程为,即,
所以,同理可得:
借助于根与系数的关系得到即,是方程的两个不同的根,所以
由已知易得,即
解:(Ⅰ)由已知易得双曲线焦距为,离心率为,则长轴长为2,故双曲线的上顶点为,所以抛物线的方程
(Ⅱ)设为,,,
故直线的方程为,即,
所以,同理可得:,
即,是方程的两个不同的根,所以
由已知易得,即
查看习题详情和答案>>
已知曲线上动点到定点与定直线的距离之比为常数.
(1)求曲线的轨迹方程;
(2)若过点引曲线C的弦AB恰好被点平分,求弦AB所在的直线方程;
(3)以曲线的左顶点为圆心作圆:,设圆与曲线交于点与点,求的最小值,并求此时圆的方程.
【解析】第一问利用(1)过点作直线的垂线,垂足为D.
代入坐标得到
第二问当斜率k不存在时,检验得不符合要求;
当直线l的斜率为k时,;,化简得
第三问点N与点M关于X轴对称,设,, 不妨设.
由于点M在椭圆C上,所以.
由已知,则
,
由于,故当时,取得最小值为.
计算得,,故,又点在圆上,代入圆的方程得到.
故圆T的方程为:
查看习题详情和答案>>
如图,在四棱锥P-ABCD中,则面PAD⊥底面 ABCD,
侧棱PA=PD=,底面ABCD为直角梯形,其中
BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.
(1)求证:PO⊥平面ABCD;
(2)求异面直线PB与CD所成角的余弦值;
(3)线段AD上是否存在点Q,使得它到平面PCD的距离为?若存在,求出的值;若不存在,请说明理由.
查看习题详情和答案>>已知抛物线C的对称轴与y轴平行,顶点到原点的距离为5,若将抛物线C向上平移3个单位,则在x轴上截得的线段为原抛物线C在x轴上截得的线段的一半;若将抛物线C向左平移1个单位,则所得抛物线过原点,求抛物线C的方程.
(1)选修4-2:矩阵与变换
已知矩阵A=
|
α |
|
β |
|
(Ⅰ)求矩阵A;
(Ⅱ)判断矩阵A是否可逆,若可逆求出其逆矩阵A-1.
(2)选修4-4:坐标系与参数方程
已知直线的极坐标方程为ρsin(θ+
π |
4 |
| ||
2 |
|
(Ⅰ)将直线的极坐标方程化为直角坐标方程;
(Ⅱ)求圆M上的点到直线的距离的最小值.
(3)选修4-5:不等式选讲,设函数f(x)=|x-1|+|x-a|;
(Ⅰ)若a=-1,解不等式f(x)≥3;
(Ⅱ)如果关于x的不等式f(x)≤2有解,求a的取值范围.