网址:http://m.1010jiajiao.com/timu_id_476606[举报]
已知向量=(),=(,),其中().函数,其图象的一条对称轴为.
(I)求函数的表达式及单调递增区间;
(Ⅱ)在△ABC中,a、b、c分别为角A、B、C的对边,S为其面积,若=1,b=l,S△ABC=,求a的值.
【解析】第一问利用向量的数量积公式表示出,然后利用得到,从而得打解析式。第二问中,利用第一问的结论,表示出A,结合正弦面积公式和余弦定理求解a的值。
解:因为
由余弦定理得,……11分故
已知正四棱柱中,. (1)求证:;(2)求二面角的余弦值;(3)在线段上是否存在点,使得平面平面,若存在,求出的值;若不存在,请说明理由.
如图,在三棱锥中, ,,为线段的中点.
(Ⅰ)求证:;
(Ⅱ)求二面角的余弦值.
如图,在几何体中,,,,且,.
(I)求证:;
(II)求二面角的余弦值.