摘要:解之得或(舍)
网址:http://m.1010jiajiao.com/timu_id_471460[举报]
已知函数
其中
为自然对数的底数,
.(Ⅰ)设
,求函数
的最值;(Ⅱ)若对于任意的
,都有
成立,求
的取值范围.
【解析】第一问中,当
时,
,
.结合表格和导数的知识判定单调性和极值,进而得到最值。
第二问中,∵
,
,
∴原不等式等价于:
,
即
, 亦即![]()
分离参数的思想求解参数的范围
解:(Ⅰ)当
时,
,
.
当
在
上变化时,
,
的变化情况如下表:
|
|
|
|
|
|
|
|
|
|
- |
|
+ |
|
|
|
|
|
|
|
1/e |
∴
时,
,
.
(Ⅱ)∵
,
,
∴原不等式等价于:
,
即
, 亦即
.
∴对于任意的
,原不等式恒成立,等价于
对
恒成立,
∵对于任意的
时,
(当且仅当
时取等号).
∴只需
,即
,解之得
或
.
因此,
的取值范围是![]()
查看习题详情和答案>>
已知点A(7,1),B(1,4),若直线y=ax与线段AB交于点C,且
=2
,则实数a=________.
[答案] 1
[解析] 设C(x0,ax0),则
=(x0-7,ax0-1),
=(1-x0,4-ax0),
∵
=2
,∴
,解之得
.
查看习题详情和答案>>
【解析】如图:|OB|=b,|O F1|=c.∴kPQ=
,kMN=﹣
.
直线PQ为:y=
(x+c),两条渐近线为:y=
x.由
,得:Q(
,
);由
,得:P(
,
).∴直线MN为:y-
=﹣
(x-
),
令y=0得:xM=
.又∵|MF2|=|F1F2|=2c,∴3c=xM=
,解之得:
,即e=
.
【答案】B
查看习题详情和答案>>