摘要:又y1=x1+m,y2=x2+m, ∴(*)分子=(x1+m-1)(x2-2)+( x2+m -1)(x1-2) =x1x2+(m-2)(x1+x2)-4(m-1)=2m2-4+=0 ∴k1+k2=0.证之.
网址:http://m.1010jiajiao.com/timu_id_471405[举报]
已知数列{xn},{yn}满足x1=x2=1,y1=y2=2,并且
=λ
,
≥λ
(λ为非零参数,n=2,3,4,…).
(1)若x1,x3,x5成等比数列,求参数λ的值;
(2)当λ>0时,证明
≤
(n∈N*);当λ>1时,证明:
+
+…+
<
(n∈N*).
查看习题详情和答案>>
xn+1 |
xn |
xn |
xn-1 |
yn+1 |
yn |
yn |
yn-1 |
(1)若x1,x3,x5成等比数列,求参数λ的值;
(2)当λ>0时,证明
xn+1 |
yn+1 |
xn |
yn |
x1-y1 |
x2-y2 |
x2-y2 |
x3-y3 |
xn-yn |
xn+1-yn+1 |
λ |
λ-1 |
已知数列{xn},{yn}满足x1=x2=1,y1=y2=2,并且
=λ
,
≥λ
(λ为非零参数,n=2,3,4,…).
(1)若x1,x3,x5成等比数列,求参数λ的值;
(2)当λ>0时,证明
≤
(n∈N*);当λ>1时,证明
+
+…+
<
(n∈N*).
查看习题详情和答案>>
xn+1 |
xn |
xn |
xn-1 |
yn+1 |
yn |
yn |
yn-1 |
(1)若x1,x3,x5成等比数列,求参数λ的值;
(2)当λ>0时,证明
xn+1 |
yn+1 |
xn |
yn |
x1-y1 |
x2-y2 |
x2-y2 |
x3-y3 |
xn-yn |
xn+1-yn+1 |
λ |
λ-1 |
判断下列各组中的两个函数是同一函数的为( )
(1)y1=
,y2=x-5;
(2)y1=
,y2=
;
(3)y1=x,y2=
;
(4)y1=x,y2=
;
(5)y1=(
)2,y2=2x-5.
(1)y1=
(x+3)(x-5) |
x+3 |
(2)y1=
x+1 |
x-1 |
(x+1)(x-1) |
(3)y1=x,y2=
x2 |
(4)y1=x,y2=
3 | x3 |
(5)y1=(
2x-5 |
查看习题详情和答案>>