摘要:证明:设直线的方程为.由 .得
网址:http://m.1010jiajiao.com/timu_id_471390[举报]
设椭圆的一个顶点与抛物线的焦点重合,F1,F2分别是椭圆的左、右焦点,且离心率,且过椭圆右焦点F2的直线l与椭圆C交于M、N两点。
(1)求椭圆C的方程;
(2)是否存在直线l,使得,若存在,求出直线l的方程;若不存在,说明理由。
(3)若AB是椭圆C经过原点O的弦,MN∥AB,求证:为定值。
查看习题详情和答案>>
(1)求椭圆C的方程;
(2)是否存在直线l,使得,若存在,求出直线l的方程;若不存在,说明理由。
(3)若AB是椭圆C经过原点O的弦,MN∥AB,求证:为定值。
已知椭圆C的方程为
+
= 1(a>0),其焦点在x轴上,点Q(
,
)为椭圆上一点.
(1)求该椭圆的标准方程;
(2)设动点P(x0,y0)满足
=
+2
,其中M、N是椭圆C上的点,直线OM与ON的斜率之积为-
,求证:
+2
为定值;
(3)在(2)的条件下探究:是否存在两个定点A,B,使得|PA|+|PB|为定值?若存在,给出证明;若不存在,请说明理由.
查看习题详情和答案>>
x2 |
a2 |
y2 |
2 |
| ||
2 |
| ||
2 |
(1)求该椭圆的标准方程;
(2)设动点P(x0,y0)满足
OP |
OM |
ON |
1 |
2 |
x | 20 |
y | 20 |
(3)在(2)的条件下探究:是否存在两个定点A,B,使得|PA|+|PB|为定值?若存在,给出证明;若不存在,请说明理由.
已知椭圆C的方程为:
+
=1 (a>0),其焦点在x轴上,离心率e=
.
(1)求该椭圆的标准方程;
(2)设动点P(x0,y0)满足
=
+2
,其中M,N是椭圆C上的点,直线OM与ON的斜率之积为-
,求证:x02+2
为定值.
(3)在(2)的条件下,问:是否存在两个定点A,B,使得|PA|+|PB|为定值?若存在,给出证明;若不存在,请说明理由.
查看习题详情和答案>>
x2 |
a2 |
y2 |
2 |
| ||
2 |
(1)求该椭圆的标准方程;
(2)设动点P(x0,y0)满足
OP |
OM |
ON |
1 |
2 |
y | 20 |
(3)在(2)的条件下,问:是否存在两个定点A,B,使得|PA|+|PB|为定值?若存在,给出证明;若不存在,请说明理由.