摘要:综上所述:只有时满足条件.故.----14′
网址:http://m.1010jiajiao.com/timu_id_467730[举报]
已知函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件f(1-x)=f(1+x),且函数g(x)=f(x)-x只有一个零点.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求实数m,n(m<n),使得f(x)的定义域为[m,n]时,f(x)的取值范围是[3m,3n]. 查看习题详情和答案>>
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求实数m,n(m<n),使得f(x)的定义域为[m,n]时,f(x)的取值范围是[3m,3n]. 查看习题详情和答案>>
(本小题满分12分)
设二次函数f(x)=ax2+bx(a≠0)满足条件:
①f(-1+x)=f(-1-x);②函数f(x)的图象与直线y=x只有一个公共点.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若不等式>()2-tx在t∈[-2,2]时恒成立,求实数x的取值范围.
查看习题详情和答案>>
已知函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件f(1-x)=f(1+x),且函数g(x)=f(x)-x只有一个零点.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求实数m,n(m<n),使得f(x)的定义域为[m,n]时,f(x)的取值范围是[3m,3n].
查看习题详情和答案>>
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求实数m,n(m<n),使得f(x)的定义域为[m,n]时,f(x)的取值范围是[3m,3n].
查看习题详情和答案>>