摘要:(Ⅱ)令.证明:数列为等比数列,
网址:http://m.1010jiajiao.com/timu_id_447505[举报]
数列{bn}的首项b1=1,前n项和为Sn,点(n,Sn)、(4,10)都在二次函数y=ax2+bx的图象上,数列{an}满足
=2n.
(Ⅰ)求证:数列{bn}是等差数列,并求数列{an}的通项公式;
(Ⅱ)令cn=(1-
)
,Rn=
+
+
+…+
.试比较Rn与
的大小,并证明你的结论.
查看习题详情和答案>>
| bn |
| an |
(Ⅰ)求证:数列{bn}是等差数列,并求数列{an}的通项公式;
(Ⅱ)令cn=(1-
| 1 |
| n+1 |
| 1 |
| an |
| 1 |
| c1 |
| 1 |
| c2 |
| 1 |
| c3 |
| 1 |
| cn |
| 5n |
| 2n+1 |
数列{an}是公差为d(d>0)的等差数列,且a2是a1与a4的等比中项,设Sn=a1+a3+a5+…+a2n-1(n∈N*).
(1)求证:
+
=2
;
(2)若d=
,令bn=
,{bn}的前n项和为Tn,是否存在整数P、Q,使得对任意n∈N*,都有P<Tn<Q,若存在,求出P的最大值及Q的最小值;若不存在,请说明理由.
查看习题详情和答案>>
(1)求证:
| Sn |
| Sn+2 |
| Sn+1 |
(2)若d=
| 1 |
| 4 |
| ||
| 2n-1 |
等差数列{ an}中a3=7,a1+a2+a3=12,记Sn为{an}的前n项和,令bn=anan+1,数列{
}的前n项和为Tn.
(1)求an和Sn;
(2)求证:Tn<
;
(3)是否存在正整数m,n,且1<m<n,使得T1,Tm,Tn成等比数列?若存在,求出m,n的值,若不存在,说明理由.
查看习题详情和答案>>
| 1 |
| bn |
(1)求an和Sn;
(2)求证:Tn<
| 1 |
| 3 |
(3)是否存在正整数m,n,且1<m<n,使得T1,Tm,Tn成等比数列?若存在,求出m,n的值,若不存在,说明理由.