摘要:7.如图6.在△MBN中.BM=6.点A.C.D分别在MB.NB.MN上.四边形ABCD为平行四边形.∠NDC=∠MDA.则ABCD的周长是 A.24 B.18 C.16 D.12
网址:http://m.1010jiajiao.com/timu_id_446640[举报]
(2009年莆田)如图1,在矩形中,动点从点出发,沿→→→方向运动至点处停止.设点运动的路程为,的面积为,如果关于的函数图象如图2所示,则当时,点应运动到( )
A.处 B.处 C.处 D.处
查看习题详情和答案>>(2006•福州质检)如图,直角三角形A1B1C1中,∠C1=90°,点A、A1在y轴上,且AO=2A1O,连接B1O并延长至B,使BO=2B1O,请用尺规完成下列作图:连接C1O并延长至C,使CO=2C1O,连接AB、BC、CA,则△A1B1C1
,-1.5),则△ABC中,边AB的长是
查看习题详情和答案>>
∽
∽
△ABC(填≌或∽),若∠B1A1C1=30°,A1(0,-1.5),C1(-3 |
4
4
.实验与探究:在△ABC中,∠A、∠B、∠C所对应的边分别用a、b、c表示.
(1)如图1,在△ABC中,∠A=2∠B,且∠A=60°.易证:a2=b(b+c)
(2)如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”.本题第一问中的三角形是一个特殊的倍角三角形,那么对于任意的倍角△ABC,如图2,∠A=2∠B,关系式a2=b(b+c)是否仍然成立?并证明你的结论.
归纳与发现
由以上的证明,可以得到关于倍角三角形的一个结论:一个三角形中有一个角等于另一个角的两倍,2倍角所对边的平方等于一倍角所对边乘该边与第三边的和.
运用与推广
(3)(2009年全国初中数学联赛)在△ABC中,最大角∠A是最小角∠C的2倍,且AB=7,AC=8.则BC=
(A)7
(B)10 (C)
(D)7
(4)是否存在一个三边长恰是三个连续正整数,且其中一个内角等于另一个内角2倍的△ABC?证明你的结论.
查看习题详情和答案>>
(1)如图1,在△ABC中,∠A=2∠B,且∠A=60°.易证:a2=b(b+c)
(2)如果一个三角形的一个内角等于另一个内角的2倍,我们称这样的三角形为“倍角三角形”.本题第一问中的三角形是一个特殊的倍角三角形,那么对于任意的倍角△ABC,如图2,∠A=2∠B,关系式a2=b(b+c)是否仍然成立?并证明你的结论.
归纳与发现
由以上的证明,可以得到关于倍角三角形的一个结论:一个三角形中有一个角等于另一个角的两倍,2倍角所对边的平方等于一倍角所对边乘该边与第三边的和.
运用与推广
(3)(2009年全国初中数学联赛)在△ABC中,最大角∠A是最小角∠C的2倍,且AB=7,AC=8.则BC=
C
C
(A)7
2 |
105 |
3 |
(4)是否存在一个三边长恰是三个连续正整数,且其中一个内角等于另一个内角2倍的△ABC?证明你的结论.