摘要:向量的概念:我们把既有大小又有方向的量叫向量 注意:1°数量与向量的区别:数量只有大小.是一个代数量.可以进行代数运算.比较大小,向量有方向.大小.双重性.不能比较大小 2°从19世纪末到20世纪初.向量就成为一套优良通性的数学体系.用以研究空间性质
网址:http://m.1010jiajiao.com/timu_id_4461809[举报]
材料:采访零向量
W:你好!零向量.我是《数学天地》的一名记者,为了让在校的高中生更好了解你,能不能对你进行一次采访呢?
零向量:当然可以,我们向量王国随时恭候大家的光临,很乐意接受你的采访,让高中生朋友更加了解我,更好地为他们服务.
W:好的,那就开始吧!你的名字有什么特殊的含义吗?
零向量:零向量就是长度为零的向量,它与数字0有着密切的联系,所以用0来表示我.
W:你与其他向量有什么共同之处呢?
零向量:既然我是向量王国的一个成员,就具有向量的基本性质,如既有大小又有方向,在进行加、减法运算时满足交换律和结合律,还定义了与实数的积.
W:你有哪些值得骄傲的特殊荣耀呢?
零向量:首先,我的方向是不定的,可以与任意的向量平行.其次,我还有其他一些向量所没有的特殊待遇:如我的相反向量仍是零向量;在向量的线性运算中,我与实数0很有相似之处.
W:你有如此多的荣耀,那么是否还有烦恼之事呢?
零向量:当然有了,在向量王国还有许多“权利和义务”却大有把我排斥在外之意,如平行向量的定义,向量共线定理,两向量夹角的定义都对我进行了限制.所有这些确实给一些高中生带来了很多苦恼,在此我向大家真诚地说一声:对不起,这不是我的错.但我还是很高兴有这次机会与大家见面.
W:OK!采访就到这里吧,非常感谢你的合作,再见!
零向量:Bye!
阅读上面的材料回答下面问题.
应用零向量时应注意哪些问题?
(易向量的概念)下列命题中,正确的是( )
| A、若a∥b,则a与b的方向相同或相反 | B、若a∥b,b∥c,则a∥c | C、若两个单位向量互相平行,则这两个单位向量相等 | D、若a=b,b=c,则a=c |
| x2 |
| a2 |
| y2 |
| b2 |
| 9y2 |
| 8 |
我们把具有公共焦点、公共对称轴的两段圆锥曲线弧合成的封闭曲线称为“盾圆”.
(2)如图,已知“盾圆D”的方程为y2=
|
(3)由抛物线弧E1:y2=4x(0≤x≤
| 2 |
| 3 |
| x2 |
| a2 |
| y2 |
| b2 |
| 2 |
| 3 |
| r1 |
| r2 |