摘要:2]曹时武 数学概念课的教学模式探讨[J]. 中学数学 2007.12
网址:http://m.1010jiajiao.com/timu_id_4455059[举报]
“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如下列联表:
已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是
.
(Ⅰ)请将上面的列表补充完整(在答题卡上直接填写结果,不需要写求解过程),并据此资料分析反感“中国式过马路”与性别是否有关?(x2=
,当Χ2<2.706时,没有充分的证据判定变量性别有关,当Χ2>2.706时,有90%的把握判定变量性别有关,当Χ2>3.841时,有95%的把握判定变量性别有关,当Χ2>6.635时,有99%的把握判定变量性别有关)
(Ⅱ)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列和数学期望.
查看习题详情和答案>>
| 男性 | 女性 | 合计 | |
| 反感 | 10 | ||
| 不反感 | 8 | ||
| 合计 | 30 |
| 8 |
| 15 |
(Ⅰ)请将上面的列表补充完整(在答题卡上直接填写结果,不需要写求解过程),并据此资料分析反感“中国式过马路”与性别是否有关?(x2=
| (a+b+c+d)(ad-bc)2 |
| (a+b)(c+d)(a+c)(b+d) |
(Ⅱ)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列和数学期望.
甲乙两人进行某种游戏比赛,规定每一次胜者得1分,负者得0分;当其中一人的得分比另一人的多2分时即赢得这场游戏比赛,比赛随之结束;同时规定比赛次数最多不超过10次,即经10次比赛,得分多者赢得这场游戏,得分相等为和局.已知每次比赛甲获胜的概率为p(0<p<1),乙获胜的概率为q(q=1-p).假定各次比赛的结果是相互独立的,比赛经ξ次结束.
(1)求ξ的分布列及数学期望Eξ.
(2)求ξ的数学期望Eξ的取值范围.
查看习题详情和答案>>
(1)求ξ的分布列及数学期望Eξ.
(2)求ξ的数学期望Eξ的取值范围.
我们用符号“||”定义过一些数字概念,如实数绝对值的概念:对于a∈R,|a|=
,可以证明,对任意a,b∈R,不等式|a|-|b|≤|a+b|≤|a|+|b|成立.
(1)再写出两个这类数学概念的定义及其成立的不等式;
(2)对于集合A,定义“|A|”为集合A中元素的个数,对任意的集合A、B有类似的不等式成立吗?如果有,写出一个,并指出等号成立的条件(不必说明理由);如果没有,请说明理由;
(3)设有集合A、B,若|A|=15,|B|≥15,若从A中任取两上元素,恰好都是B中元素的概率p≥
,求|A∩B|的取值范围.
查看习题详情和答案>>
|
(1)再写出两个这类数学概念的定义及其成立的不等式;
(2)对于集合A,定义“|A|”为集合A中元素的个数,对任意的集合A、B有类似的不等式成立吗?如果有,写出一个,并指出等号成立的条件(不必说明理由);如果没有,请说明理由;
(3)设有集合A、B,若|A|=15,|B|≥15,若从A中任取两上元素,恰好都是B中元素的概率p≥
| 1 |
| 5 |