摘要:13.f -1(x) = e2x(x∈R) 14.≤a≤ 15.1.8 16.①③④
网址:http://m.1010jiajiao.com/timu_id_4437090[举报]
已知f0(x)=sinx,若f1(x)=
(x),f2(x)=
(x),f3(x)=
(x),…,fn+1(x)=
(x)(n∈N),则
(
)=
.
查看习题详情和答案>>
f | ′ 0 |
f | ′ 1 |
f | ′ 2 |
f | ′ n |
f | 2011 |
16π |
3 |
| ||
2 |
| ||
2 |
已知函数f(x)=(
)2(x>1).
(1)求f-1(x)的表达式;
(2)判断f-1(x)的单调性;
(3)若对于区间[
,
]上的每一个x的值,不等式(1-
)f-1(x)>m(m-
)恒成立,求m的取值范围.
查看习题详情和答案>>
x-1 |
x+1 |
(1)求f-1(x)的表达式;
(2)判断f-1(x)的单调性;
(3)若对于区间[
1 |
4 |
1 |
2 |
x |
x |
函数f(x)=
(0<x<1)的反函数为f-1(x),数列{an}和{bn}满足:a1=
,an+1=f-1(an),函数y=f-1(x)的图象在点(n,f-1(n))(n∈N*)处的切线在y轴上的截距为bn.
(1)求数列{an}的通项公式;
(2)若数列{
-
};的项中仅
-
最小,求λ的取值范围;
(3)令函数g(x)=[f-1(x)+f(x)]-
,0<x<1.数列{xn}满足:x1=
,0<xn<1且xn+1=g(xn),(其中n∈N*).证明:
+
+…+
<
.
查看习题详情和答案>>
x |
1-x |
1 |
2 |
(1)求数列{an}的通项公式;
(2)若数列{
bn | ||
|
λ |
an |
b5 | ||
|
λ |
a5 |
(3)令函数g(x)=[f-1(x)+f(x)]-
1-x2 |
1+x2 |
1 |
2 |
(x1-x2)2 |
x1x2 |
(x2-x3)2 |
x2x3 |
(xn+1-xn)2 |
xnxn+1 |
| ||
8 |