摘要:命题的定义:可以判断真假的语句叫做命题.
网址:http://m.1010jiajiao.com/timu_id_4429339[举报]
(2012•自贡三模)对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义f′(x)是y=f(x)的导函数y=f′(x)的导函数,若方程f′(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”,可以发现,任何三次函数都有“拐点”,任何三次函数都有对称中心,且“拐点”就是对称中心,请你根据这一发现判断下列命题:
①任意三次函数都关于点(-
,f(-
))对称:
②存在三次函数f′(x)=0有实数解x0,点(x0,f(x0))为函数y=f(x)的对称中心;
③存在三次函数有两个及两个以上的对称中心;
④若函数g(x)=
x3-
x2-
,则,g(
)+g(
)+g(
)+…+g(
)=-105.5.
其中正确命题的序号为
查看习题详情和答案>>
①任意三次函数都关于点(-
b |
3a |
b |
3a |
②存在三次函数f′(x)=0有实数解x0,点(x0,f(x0))为函数y=f(x)的对称中心;
③存在三次函数有两个及两个以上的对称中心;
④若函数g(x)=
1 |
3 |
1 |
2 |
5 |
12 |
1 |
2012 |
2 |
2012 |
3 |
2012 |
2011 |
2012 |
其中正确命题的序号为
①②④
①②④
(把所有正确命题的序号都填上).
对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义f′(x)是y=f(x)的导函数y=f′(x)的导函数,若方程f′(x)=0有实数解x,则称点(x,f(x))为函数y=f(x)的“拐点”,可以发现,任何三次函数都有“拐点”,任何三次函数都有对称中心,且“拐点”就是对称中心,请你根据这一发现判断下列命题:
①任意三次函数都关于点(-,f(-))对称:
②存在三次函数f′(x)=0有实数解x,点(x,f(x))为麵y=f(x)的对称中心;
③存在三次函数有两个及两个以上的对称中心;
④若函数g(x)=x3-x2-,则,g()+g()+g()+…+g()=-105.5.
其中正确命题的序号为 (把所有正确命题的序号都填上). 查看习题详情和答案>>
①任意三次函数都关于点(-,f(-))对称:
②存在三次函数f′(x)=0有实数解x,点(x,f(x))为麵y=f(x)的对称中心;
③存在三次函数有两个及两个以上的对称中心;
④若函数g(x)=x3-x2-,则,g()+g()+g()+…+g()=-105.5.
其中正确命题的序号为 (把所有正确命题的序号都填上). 查看习题详情和答案>>
对于三次函数,定义是的导函数的导函数,若方程有实数解,则称点为函数的“拐点”,可以证明,任何三次函数都有“拐点”,任何三次函数都有对称中心,且“拐点”就是对称中心,请你根据这一结论判断下列命题:
①任意三次函数都关于点对称:
②存在三次函数有实数解,点为函数的对称中心;
③存在三次函数有两个及两个以上的对称中心;
④若函数,则,
其中正确命题的序号为__ _____(把所有正确命题的序号都填上).
查看习题详情和答案>>
对于三次函数f(x)=ax3+bx2+cx+d(a≠0),定义f′(x)是y=f(x)的导函数y=f′(x)的导函数,若方程f′(x)=0有实数解x,则称点(x,f(x))为函数y=f(x)的“拐点”,可以发现,任何三次函数都有“拐点”,任何三次函数都有对称中心,且“拐点”就是对称中心,请你根据这一发现判断下列命题:
①任意三次函数都关于点(-,f(-))对称:
②存在三次函数f′(x)=0有实数解x,点(x,f(x))为麵y=f(x)的对称中心;
③存在三次函数有两个及两个以上的对称中心;
④若函数g(x)=x3-x2-,则,g()+g()+g()+…+g()=-105.5.
其中正确命题的序号为 (把所有正确命题的序号都填上). 查看习题详情和答案>>
①任意三次函数都关于点(-,f(-))对称:
②存在三次函数f′(x)=0有实数解x,点(x,f(x))为麵y=f(x)的对称中心;
③存在三次函数有两个及两个以上的对称中心;
④若函数g(x)=x3-x2-,则,g()+g()+g()+…+g()=-105.5.
其中正确命题的序号为 (把所有正确命题的序号都填上). 查看习题详情和答案>>