摘要:掌握正.余弦函数.正余切函数的性质;
网址:http://m.1010jiajiao.com/timu_id_4420939[举报]
在技术工程上,常用到双曲线正弦函数sinhx=
和双曲线余弦函数coshx=
,而双曲线正弦函数和双曲线余弦函数与我们学过的正弦函数和余弦函数有许多类似的性质,比如关于正、余弦函数有sin(x+y)=sinxcosy+cosxsiny成立,而关于双曲正、余弦函数满足sh(x+y)=shxchy+chxshy.请你运用类比的思想,写出关于双曲正弦、双曲余弦的一个新关系式
.
查看习题详情和答案>>
ex-e-x |
2 |
ex+e-x |
2 |
在工程技术中,常用到双曲正弦函数shx=
和双曲余弦函数chx=
,双曲正弦函数和双曲余弦函数与我们学过的正弦函数和余弦函数有许多相类似的性质,请类比正、余弦函数的和角或差角公式,写出关于双曲正弦、双曲余弦函数的一个正确的类似公式
查看习题详情和答案>>
ex-e-x |
2 |
ex+e-x |
2 |
ch(x-y)=chx•chy-shx•shy
ch(x-y)=chx•chy-shx•shy
.已知函数f(x)=mx3+nx2(m、n∈R,m≠0)的图象在(2,f(2))处的切线与x轴平行.
(1)求n,m的关系式并求f(x)的单调减区间;
(2)证明:对任意实数0<x1<x2<1,关于x的方程:f′(x)-
=0在(x1,x2)恒有实数解
(3)结合(2)的结论,其实我们有拉格朗日中值定理:若函数f(x)是在闭区间[a,b]上连续不断的函数,且在区间(a,b)内导数都存在,则在(a,b)内至少存在一点x0,使得f′(x0)=
.如我们所学过的指、对数函数,正、余弦函数等都符合拉格朗日中值定理条件.试用拉格朗日中值定理证明:
当0<a<b时,
<ln
<
(可不用证明函数的连续性和可导性).
查看习题详情和答案>>
(1)求n,m的关系式并求f(x)的单调减区间;
(2)证明:对任意实数0<x1<x2<1,关于x的方程:f′(x)-
f(x2)-f(x1) |
x2-x1 |
(3)结合(2)的结论,其实我们有拉格朗日中值定理:若函数f(x)是在闭区间[a,b]上连续不断的函数,且在区间(a,b)内导数都存在,则在(a,b)内至少存在一点x0,使得f′(x0)=
f(b)-f(a) |
b-a |
当0<a<b时,
b-a |
b |
b |
a |
b-a |
a |