摘要:1.三角函数的性质:(结合图象理解, 表中)) y=sinx y=cosx y=tanx y=cotx 定义域 R R {x∈R|x≠kπ} 值域 [-1,1] [-1,1] R R 周期 2π 2π π π 奇偶性 奇函数 偶函数 奇函数 奇函数 增区间 无 减区间 无 对称轴 x=kπ 无 对称 中心 (,0)
网址:http://m.1010jiajiao.com/timu_id_4420711[举报]
已知函数
(其中
)的图象与x轴的交点中,相邻两个交点之间的距离为
,且图象上一个最低点为
.
(1)求
的解析式; (2)当
,求
的值域.
【解析】第一问利用三角函数的性质得到)由最低点为
得A=2. 由x轴上相邻的两个交点之间的距离为
得
=
,即
,
由点
在图像上的![]()
![]()
第二问中,![]()
![]()
当
=
,即
时,
取得最大值2;当![]()
即
时,
取得最小值-1,故
的值域为[-1,2]
查看习题详情和答案>>
已知![]()
R
.
(1)求函数
的最大值,并指出此时
的值.
(2)若
,求
的值.
【解析】本试题主要考查了三角函数的性质的运用。(1)中,三角函数先化简
=
,然后利用
是,函数取得最大值
(2)中,结合(1)中的结论,然后由![]()
得
,两边平方得
即
,因此![]()
查看习题详情和答案>>
已知
中,内角
的对边的边长分别为
,且![]()
(I)求角
的大小;
(II)若
求
的最小值.
【解析】第一问,由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB,![]()
第二问,![]()
三角函数的性质运用。
解:(Ⅰ)由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB,
(Ⅱ)由(Ⅰ)可知
,
,则当
,即
时,y的最小值为
.
查看习题详情和答案>>