网址:http://m.1010jiajiao.com/timu_id_4420285[举报]
已知函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3.
(1)求f(x)的解析式;
(2)若过点A(2,m)可作曲线y=f(x)的三条切线,求实数m的取值范围.
【解析】本试题主要考查了导数在研究函数中的运用。第一问,利用函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3,得到c=-3 ∴a=1, f(x)=x3-3x
(2)中设切点为(x0,x03-3x0),因为过点A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分离参数∴m=-2x03+6x02-6
然后利用g(x)=-2x3+6x2-6函数求导数,判定单调性,从而得到要是有三解,则需要满足-6<m<2
解:(1)f′(x)=3ax2+2bx+c
依题意![]()
又f′(0)=-3
∴c=-3 ∴a=1 ∴f(x)=x3-3x
(2)设切点为(x0,x03-3x0),
∵f′(x)=3x2-3,∴f′(x0)=3x02-3
∴切线方程为y-(x03-3x0)=(3x02-3)(x-x0)
又切线过点A(2,m)
∴m-(x03-3x0)=(3x02-3)(2-x0)
∴m=-2x03+6x02-6
令g(x)=-2x3+6x2-6
则g′(x)=-6x2+12x=-6x(x-2)
由g′(x)=0得x=0或x=2
∴g(x)在(-∞,0)单调递减,(0,2)单调递增,(2,+∞)单调递减.
∴g(x)极小值=g(0)=-6,g(x)极大值=g(2)=2
画出草图知,当-6<m<2时,m=-2x3+6x2-6有三解,
所以m的取值范围是(-6,2).
![]()
查看习题详情和答案>>
已知函数
在
处取得极值2.
⑴ 求函数
的解析式;
⑵ 若函数
在区间
上是单调函数,求实数m的取值范围;
【解析】第一问中利用导数![]()
又f(x)在x=1处取得极值2,所以
,
所以![]()
第二问中,
因为
,又f(x)的定义域是R,所以由
,得-1<x<1,所以f(x)在[-1,1]上单调递增,在
上单调递减,当f(x)在区间(m,2m+1)上单调递增,则有
,得![]()
解:⑴ 求导
,又f(x)在x=1处取得极值2,所以
,即
,所以
…………6分
⑵ 因为
,又f(x)的定义域是R,所以由
,得-1<x<1,所以f(x)在[-1,1]上单调递增,在
上单调递减,当f(x)在区间(m,2m+1)上单调递增,则有
,得
, …………9分
当f(x)在区间(m,2m+1)上单调递减,则有
得
…………12分
.综上所述,当
时,f(x)在(m,2m+1)上单调递增,当
时,f(x)在(m,2m+1)上单调递减;则实数m的取值范围是
或![]()
查看习题详情和答案>>
(1)若p∨q为真,p∧q为假,则p与q必为一真一假;
(2)若数列{an}的前n项和为Sn=n2+n+1,n∈N*,则an=2n,n∈N*;
(3)若f′(x0)=0,则f(x)在x=x0处取得极值;
(4)由变量x和y的数据得到其回归直线方程l:
| y |
. |
| x |
. |
| y |
以上四种说法,其中正确说法的序号为