摘要:22.本题共有3个小题.第1小题满分3分.第2小题满分7分.第3小题满分8分) 由函数y=f(x)确定数列{an}.an=f的反函数y=f –1(x)能确定数列{bn}.bn= f –1(n).若对于任意nÎN*.都有bn=an.则称数列{bn}是数列{an}的“自反数列 . =确定数列{an}的自反数列为{bn}.求an, 条件下.记为正数数列{xn}的调和平均数.若dn=.Sn为数列{dn}的前n项之和.Hn为数列{Sn}的调和平均数.求, (3)已知正数数列{cn}的前n项之和 求Tn表达式.
网址:http://m.1010jiajiao.com/timu_id_4417531[举报]
(本大题满分18分)本大题共有3个小题,第1小题满分4分,第2小题满6分,第3小题满8分.
已知集合具有性质:对任意,与至少一个属于.
(1)分别判断集合与是否具有性质,并说明理由;
(2)①求证:;
②求证:;
(3)研究当和时,集合中的数列是否一定成等差数列.
查看习题详情和答案>>
(本题共3小题,满分18分。第1小题满分4分,第2小题满分7分,第3小题7分)
对定义在上,并且同时满足以下两个条件的函数称为函数.
① 对任意的,总有;
② 当时,总有成立.
已知函数与是定义在上的函数.
(1)试问函数是否为函数?并说明理由;
(2)若函数是函数,求实数的值;
(3)在(2)的条件下,是否存在实数,使方程恰有两解?若存在,求出实数的取值范围;若不存在,请说明理由.
查看习题详情和答案>>
(本题共3小题,满分18分。第1小题满分4分,第2小题满分7分,第3小题7分)
对定义在上,并且同时满足以下两个条件的函数称为函数.
① 对任意的,总有;
② 当时,总有成立.
已知函数与是定义在上的函数.
(1)试问函数是否为函数?并说明理由;
(2)若函数是函数,求实数的值;
(3)在(2)的条件下,是否存在实数,使方程恰有两解?若存在,求出实数的取值范围;若不存在,请说明理由.
对定义在上,并且同时满足以下两个条件的函数称为函数.
① 对任意的,总有;
② 当时,总有成立.
已知函数与是定义在上的函数.
(1)试问函数是否为函数?并说明理由;
(2)若函数是函数,求实数的值;
(3)在(2)的条件下,是否存在实数,使方程恰有两解?若存在,求出实数的取值范围;若不存在,请说明理由.