网址:http://m.1010jiajiao.com/timu_id_4416388[举报]
如图所示,圆柱的高为2,底面半径为,AE、DF是圆柱的两条母线,过作圆柱的截面交下底面于.
(1)求证:;
(2)若四边形ABCD是正方形,求证;
(3)在(2)的条件下,求二面角A-BC-E的平面角的一个三角函数值。
【解析】第一问中,利用由圆柱的性质知:AD平行平面BCFE
又过作圆柱的截面交下底面于.∥
又AE、DF是圆柱的两条母线
∥DF,且AE=DF AD∥EF
第二问中,由线面垂直得到线线垂直。四边形ABCD是正方形 又
BC、AE是平面ABE内两条相交直线
第三问中,设正方形ABCD的边长为x,则在
在
由(2)可知:为二面角A-BC-E的平面角,所以
证明:(1)由圆柱的性质知:AD平行平面BCFE
又过作圆柱的截面交下底面于.∥
又AE、DF是圆柱的两条母线
∥DF,且AE=DF AD∥EF
(2) 四边形ABCD是正方形 又
BC、AE是平面ABE内两条相交直线
(3)设正方形ABCD的边长为x,则在
在
由(2)可知:为二面角A-BC-E的平面角,所以
查看习题详情和答案>>
已知m>1,直线,椭圆C:,、分别为椭圆C的左、右焦点.
(Ⅰ)当直线过右焦点时,求直线的方程;
(Ⅱ)设直线与椭圆C交于A、B两点,△A、△B的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.[
【解析】第一问中因为直线经过点(,0),所以=,得.又因为m>1,所以,故直线的方程为
第二问中设,由,消去x,得,
则由,知<8,且有
由题意知O为的中点.由可知从而,设M是GH的中点,则M().
由题意可知,2|MO|<|GH|,得到范围
查看习题详情和答案>>
如图,已知直线()与抛物线:和圆:都相切,是的焦点.
(Ⅰ)求与的值;
(Ⅱ)设是上的一动点,以为切点作抛物线的切线,直线交轴于点,以、为邻边作平行四边形,证明:点在一条定直线上;
(Ⅲ)在(Ⅱ)的条件下,记点所在的定直线为, 直线与轴交点为,连接交抛物线于、两点,求△的面积的取值范围.
【解析】第一问中利用圆: 的圆心为,半径.由题设圆心到直线的距离.
即,解得(舍去)
设与抛物线的相切点为,又,得,.
代入直线方程得:,∴ 所以,
第二问中,由(Ⅰ)知抛物线方程为,焦点. ………………(2分)
设,由(Ⅰ)知以为切点的切线的方程为.
令,得切线交轴的点坐标为 所以,, ∵四边形FAMB是以FA、FB为邻边作平行四边形
∴ 因为是定点,所以点在定直线
第三问中,设直线,代入得结合韦达定理得到。
解:(Ⅰ)由已知,圆: 的圆心为,半径.由题设圆心到直线的距离.
即,解得(舍去). …………………(2分)
设与抛物线的相切点为,又,得,.
代入直线方程得:,∴ 所以,. ……(2分)
(Ⅱ)由(Ⅰ)知抛物线方程为,焦点. ………………(2分)
设,由(Ⅰ)知以为切点的切线的方程为.
令,得切线交轴的点坐标为 所以,, ∵四边形FAMB是以FA、FB为邻边作平行四边形,
∴ 因为是定点,所以点在定直线上.…(2分)
(Ⅲ)设直线,代入得, ……)得, …………………………… (2分)
,
.△的面积范围是
查看习题详情和答案>>
已知点(),过点作抛物线的切线,切点分别为、(其中).
(Ⅰ)若,求与的值;
(Ⅱ)在(Ⅰ)的条件下,若以点为圆心的圆与直线相切,求圆的方程;
(Ⅲ)若直线的方程是,且以点为圆心的圆与直线相切,
求圆面积的最小值.
【解析】本试题主要考查了抛物线的的方程以及性质的运用。直线与圆的位置关系的运用。
中∵直线与曲线相切,且过点,∴,利用求根公式得到结论先求直线的方程,再利用点P到直线的距离为半径,从而得到圆的方程。
(3)∵直线的方程是,,且以点为圆心的圆与直线相切∴点到直线的距离即为圆的半径,即,借助于函数的性质圆面积的最小值
(Ⅰ)由可得,. ------1分
∵直线与曲线相切,且过点,∴,即,
∴,或, --------------------3分
同理可得:,或----------------4分
∵,∴,. -----------------5分
(Ⅱ)由(Ⅰ)知,,,则的斜率,
∴直线的方程为:,又,
∴,即. -----------------7分
∵点到直线的距离即为圆的半径,即,--------------8分
故圆的面积为. --------------------9分
(Ⅲ)∵直线的方程是,,且以点为圆心的圆与直线相切∴点到直线的距离即为圆的半径,即, ………10分
∴
,
当且仅当,即,时取等号.
故圆面积的最小值.
查看习题详情和答案>>