摘要:5.若曲线与直线有两个交点时.则实数的取值范围是 .
网址:http://m.1010jiajiao.com/timu_id_4415980[举报]
本题有(1).(2).(3)三个选做题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)(本小题满分7分)选修4-2:矩阵与变换选做题
已知矩阵A=有一个属于特征值1的特征向量.
(Ⅰ) 求矩阵A;
(Ⅱ) 矩阵B=,点O(0,0),M(2,-1),N(0,2),求在矩阵AB的对应变换作用下所得到的的面积.
(2)(本小题满分7分)选修4-4:坐标系与参数方程选做题
在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知曲线的参数方程为,曲线的极坐标方程为.
(Ⅰ)将曲线的参数方程化为普通方程;(Ⅱ)判断曲线与曲线的交点个数,并说明理由.
(3)(本小题满分7分)选修4-5:不等式选讲选做题
已知函数,不等式在上恒成立.
(Ⅰ)求的取值范围;
(Ⅱ)记的最大值为,若正实数满足,求的最大值.
查看习题详情和答案>>
有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.
(1)选修4-2:矩阵与变换
已知点A(1,0),B(2,2),C(3,0),矩阵M表示变换”顺时针旋转45°”.
(Ⅰ)写出矩阵M及其逆矩阵M-1;
(Ⅱ)请写出△ABC在矩阵M-1对应的变换作用下所得△A1B1C1的面积.
(2)选修4-4:坐标系与参数方程
过P(2,0)作倾斜角为α的直线l与曲线E:
(θ为参数)交于A,B两点.
(Ⅰ)求曲线E的普通方程及l的参数方程;
(Ⅱ)求sinα的取值范围.
(3)(选修4-5 不等式证明选讲)
已知正实数a、b、c满足条件a+b+c=3,
(Ⅰ)求证:
+
+
≤3;
(Ⅱ)若c=ab,求c的最大值.
查看习题详情和答案>>
(1)选修4-2:矩阵与变换
已知点A(1,0),B(2,2),C(3,0),矩阵M表示变换”顺时针旋转45°”.
(Ⅰ)写出矩阵M及其逆矩阵M-1;
(Ⅱ)请写出△ABC在矩阵M-1对应的变换作用下所得△A1B1C1的面积.
(2)选修4-4:坐标系与参数方程
过P(2,0)作倾斜角为α的直线l与曲线E:
|
(Ⅰ)求曲线E的普通方程及l的参数方程;
(Ⅱ)求sinα的取值范围.
(3)(选修4-5 不等式证明选讲)
已知正实数a、b、c满足条件a+b+c=3,
(Ⅰ)求证:
a |
b |
c |
(Ⅱ)若c=ab,求c的最大值.
有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.
(1)选修4-2:矩阵与变换
已知点A(1,0),B(2,2),C(3,0),矩阵M表示变换”顺时针旋转45°”.
(Ⅰ)写出矩阵M及其逆矩阵M-1;
(Ⅱ)请写出△ABC在矩阵M-1对应的变换作用下所得△A1B1C1的面积.
(2)选修4-4:坐标系与参数方程
过P(2,0)作倾斜角为α的直线l与曲线E:
(θ为参数)交于A,B两点.
(Ⅰ)求曲线E的普通方程及l的参数方程;
(Ⅱ)求sinα的取值范围.
(3)(选修4-5 不等式证明选讲)
已知正实数a、b、c满足条件a+b+c=3,
(Ⅰ)求证:
+
+
≤3;
(Ⅱ)若c=ab,求c的最大值.
查看习题详情和答案>>
(1)选修4-2:矩阵与变换
已知点A(1,0),B(2,2),C(3,0),矩阵M表示变换”顺时针旋转45°”.
(Ⅰ)写出矩阵M及其逆矩阵M-1;
(Ⅱ)请写出△ABC在矩阵M-1对应的变换作用下所得△A1B1C1的面积.
(2)选修4-4:坐标系与参数方程
过P(2,0)作倾斜角为α的直线l与曲线E:
|
(Ⅰ)求曲线E的普通方程及l的参数方程;
(Ⅱ)求sinα的取值范围.
(3)(选修4-5 不等式证明选讲)
已知正实数a、b、c满足条件a+b+c=3,
(Ⅰ)求证:
a |
b |
c |
(Ⅱ)若c=ab,求c的最大值.