摘要:26.有X.Y.Z.W.M五种短周期元素.已知: ①Z+与W.M的气态氢化物分子都具有相同的电子数,X的气态氢化物分子与Y的气态氢分子具有相同的电子数, ②X的单质在W2中燃烧产生气体X W2.该气体能使品红溶液褪色, ③Y的气态氢化物与M的气态氢化物相遇时有白烟生成. 请回答: (1)M元素单质的电子式为 .X的气态氢化物稳定性 Y的气态氢化物稳定性. (2)通常情况下.实验室制取Y2的化学方程式为 . (3)通常条件下. Z的最高价氧化物对应水化物2mol与X最高价氧化物对应水化物1mol的稀溶液间反应放出的热量为114.6KJ.试写出表示该热量变化的离子方程式 . (4)若由元素W和X组成-2价酸根中W和X的质量比为3:4.写出该酸根离子与Y的气态氢化物完全反应的离子方程式 . (5)已知一定条件下.每1 mol XW2气体被W2完全氧化时放热98.0kJ.若2 mol XW2和1 mol W2在此条件下发生反应.达到平衡时放出的热量是176.4kJ.则该气体的转化率为 .
网址:http://m.1010jiajiao.com/timu_id_4412152[举报]
为了考查两个变量x和y之间的线性关系,甲、乙两位同学各自独立做了10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1,l2,已知两人所得的试验数据中,变量x和y的数据的平均值都相等,且分别是s,t.
①直线l1和l2一定有公共点(s,t);
②直线l1和l2相交,但交点不一定是(s,t);
③必有直线l1∥l2;④l1和l2必定重合.
其中,说法不正确的是( )
①直线l1和l2一定有公共点(s,t);
②直线l1和l2相交,但交点不一定是(s,t);
③必有直线l1∥l2;④l1和l2必定重合.
其中,说法不正确的是( )
查看习题详情和答案>>
(2012•韶关二模)下列四个判断:
①某校高三一班和高三二班的人数分别是m,n,某次测试数学平均分分别是a,b,则这两个班的数学平均分为
;
②10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则有c>a>b;
③从总体中抽取的样本(x1,y1),(x2,y2),…,(xn,yn),若记
=
xi,
=
yi则回归直线y=bx+a必过点(
,
);
④已知ξ服从正态分布N(0,σ2),且p(-2≤ξ≤0)=0.3,则p(ξ>2)=0.2;
其中正确的个数有( )
①某校高三一班和高三二班的人数分别是m,n,某次测试数学平均分分别是a,b,则这两个班的数学平均分为
| a+b |
| 2 |
②10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则有c>a>b;
③从总体中抽取的样本(x1,y1),(x2,y2),…,(xn,yn),若记
. |
| x |
| 1 |
| n |
| n |
| i=1 |
. |
| y |
| 1 |
| n |
| n |
| i=1 |
. |
| x |
. |
| y |
④已知ξ服从正态分布N(0,σ2),且p(-2≤ξ≤0)=0.3,则p(ξ>2)=0.2;
其中正确的个数有( )
查看习题详情和答案>>
(2012•湛江一模)某校从参加高三年级调研测式物理成绩40分以上(含40分)的学生中随机抽取60名,将其成绩分在[40,50)[50,60),[90,100]六段后得到如下频率分布表.
(1)求表中数据x、y、z的值;
(2)用分层抽样的方法在分数段为[60,80)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[70,80)的概率.
查看习题详情和答案>>
(1)求表中数据x、y、z的值;
| 分组 | 频数 | 频率 |
| [40,50) | 6 | 0.10 |
| [50,60) | 9 | 0.15 |
| [60,70) | 9 | 0.15 |
| [70,80) | z | x |
| [80,90) | y | 0.25 |
| [90,100) | 3 | 0.05 |
| 合计 | 60 | 1.00 |
班主任为了对本班学生的考试成绩进行分析,决定从全班25位女同学,15位男同学中随机抽取一个容量为8的样本进行分析.
(1)如果按性别比例分层抽样,则样本中男、女生各有多少人;
(2)随机抽取8位同学,数学分数依次为:60,65,70,75,80,85,90,95;
物理成绩依次为:72,77,80,84,88,90,93,95,
①若规定80分(含80分)以上为良好,90分(含90分)以上为优秀,在良好的条件下,求两科均为优秀的概率;
②若这8位同学的数学、物理分数事实上对应下表:
根据上表数据可知,变量y与x之间具有较强的线性相关关系,求出y与x的线性回归方程(系数精确到0.01).(参考公式:
=bx+a,其中b=
,a=
-b
;参考数据:
=77.5,
=84.875,
(xi-
)2≈1050,
(xi-
)(yi-
)≈688,
≈32.4,
≈21.4,
≈23.5)
查看习题详情和答案>>
(1)如果按性别比例分层抽样,则样本中男、女生各有多少人;
(2)随机抽取8位同学,数学分数依次为:60,65,70,75,80,85,90,95;
物理成绩依次为:72,77,80,84,88,90,93,95,
①若规定80分(含80分)以上为良好,90分(含90分)以上为优秀,在良好的条件下,求两科均为优秀的概率;
②若这8位同学的数学、物理分数事实上对应下表:
根据上表数据可知,变量y与x之间具有较强的线性相关关系,求出y与x的线性回归方程(系数精确到0.01).(参考公式:
| y |
| |||||||
|
. |
| y |
. |
| x |
. |
| x |
. |
| y |
| 8 |
| i=1 |
. |
| x |
| 8 |
| i=1 |
. |
| x |
. |
| y |
| 1050 |
| 457 |
| 550 |
某学校课题小组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(满分100分)如下表所示:
若单科成绩85分以上(含85分),则该科成绩为优秀.
(1)根据上表完成下面的2×2列联表(单位:人):
(2)根据题(1)中表格的数据计算,有多大的把握,认为学生的数学成绩与物理成绩之间有关系?
(3)若从这20个人中抽出1人来了解有关情况,求抽到的学生数学成绩与物理成绩至少有一门不优秀的概率.
参考数据:
①假设有两个分类变量X和Y,它们的值域分别为{x1,x2}和{y1,y2},其样本频数列联表(称为2×2列联表)为:
则随机变量K2=
,其中n=a+b+c+d为样本容量;
②独立检验随机变量K2的临界值参考表:
查看习题详情和答案>>
| 序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 数学成绩 | 95 | 75 | 80 | 94 | 92 | 65 | 67 | 84 | 98 | 71 | 67 | 93 | 64 | 78 | 77 | 90 | 57 | 83 | 72 | 83 |
| 物理成绩 | 90 | 63 | 72 | 87 | 91 | 71 | 58 | 82 | 93 | 81 | 77 | 82 | 48 | 85 | 69 | 91 | 61 | 84 | 78 | 86 |
(1)根据上表完成下面的2×2列联表(单位:人):
| 数学成绩优秀 | 数学成绩不优秀 | 合计 | |
| 物理成绩优秀 | |||
| 物理成绩不优秀 | |||
| 合计 | 20 |
(3)若从这20个人中抽出1人来了解有关情况,求抽到的学生数学成绩与物理成绩至少有一门不优秀的概率.
参考数据:
①假设有两个分类变量X和Y,它们的值域分别为{x1,x2}和{y1,y2},其样本频数列联表(称为2×2列联表)为:
| y1 | y2 | 合计 | |
| x1 | a | b | a+b |
| x2 | c | d | c+d |
| 合计 | a+c | b+d | a+b+c+d |
| n(ad-bc)2 |
| (a+b)(c+d)(a+c)(b+d) |
②独立检验随机变量K2的临界值参考表:
| P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |