摘要:已知数列{} 的前n项和.数列{}的前n项和 (Ⅰ)求数列{}与{}的通项公式, (Ⅱ)设.证明:当且仅当n≥3时.< [思路]由可求出.这是数列中求通项的常用方法之一.在求出后.进而得到.接下来用作差法来比较大小.这也是一常用方法. [解析](1)由于 当时, 又当时 数列项与等比数列,其首项为1,公比为 知 由即即 又时成立,即由于恒成立. 因此,当且仅当时,

网址:http://m.1010jiajiao.com/timu_id_4399659[举报]

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网