网址:http://m.1010jiajiao.com/timu_id_4399136[举报]
大家知道,解方程是否正确,可以把得出的未知数的值代入方程检验,而解
等式的解集里往往有无数个数值,不可能将这些数值一一代入原不等式进行检验.那么,解不等式所得的结果是否能正确检验呢?
解一元一次不等式的一般步骤与解一元一次方程基本一致,只是在去分母及系数化为1时,两边同乘以(或除以)同一个负数,不等号要改变方向,因此,解不等式正确与否,可以仿照解方程的代入检验.
(1)若求得的一元一次不等式的解集为x>a(或x<a),则令x=a,把x=a代入不等式的左右两边,若两边相等,则求得的不等式的解集可能是正确的,若两边不相等,则一定错了.
(2)取符合x>a(或x<a)的一个特殊数b,分别代入原不等式的左右两边,若适合原不等式,则求得的不等式解集一定正确,若不适合原不等式,则只要改变x>a(或x<a)的不等号方向即可.
请你用上面介绍的方法检验一下x>5是不是不等式1+
>5-
的解集.
大家知道,解方程是否正确,可以把得出的未知数的值代入方程检验,而解不等式的解集里往往有无数个数值,不可能将这些数值一一代入原不等式进行检验.那么,解不等式所得的结果是否能正确检验呢?
解一元一次不等式的一般步骤与解一元一次方程基本一致,只是在去分母及系数化为1时,两边同乘以(或除以)同一个负数,不等号方向要改变方向,因此,解不等式正确与否,可以仿照解方程的代入检验.
①若求得的一元一次不等式的解集为x>a(或x<a),则令x=a,把x=a代入不等式的左右两边,若两边相等,则求得的不等式的解集可能是正确的,若两边不相等,则一定错了.
②取符合x>a(或x<a)的一个特殊数b,分别代入原不等式的左右两边,若适合原不等式,则求得的不等式解集一定正确,若不适合原不等式,则只要改变x>a(或x<a=的不等号方向即可.
请你用上面介绍的方法检验一下x>5是不是不等式1+
>5-
的解集.
老师:同学们,今天我们来探索如下方程的解法:(x2-x)2-(x2-x)+12=0
学生甲:老师,这个方程先去括号,再合并同类项,行吗?
老师:这样,原方程可整理为x4-2x3-7x2+8x+12=0,次数变成了4次,用现有知识无法解答.同学们再观察观察,看看这个方程有什么特点?
学生乙:老师,我发现x2-x是整体出现的,最好不要去括号!
老师:很好,我们把x2-x看成一个整体,用y表示,即x2-x=y,那么原方程就变为y2+8y+12=0.
全体学生:(同学们都特别高兴)噢,这不是我们熟悉的一元二次方程吗?!
老师:大家真会观察和思考,太棒了!显然一元二次方程y2+8y+12=0的根是y1=6,y2=2,那么就有x2-x=6或x2-x=2.
学生丙:对啦,再解这两个方程,可得原方程的根x1=3,x2=-2,x3=2,x4=-1,嗬,有这么多根啊!
老师:同学们,通常我们把这种方法叫做换元法.在这里使用它的最大妙处在于降低了原方程的次数,这是一种重要的转化方法.
全体同学:OK,换元法真神奇!
现在,请你用换元法解下列分式方程:(
| x |
| x-1 |
| x |
| x-1 |
解方程:|x|+1=3.
解法一:当x≥0时,原方程化为x+1=3.解方程,得x=2;当x<0时,原方程化为-x+1=3.解方程,得x=-2.所以方程|x|+1=3的解是x=2或x=-2.
解法二:移项,得|x|=3-1.合并同类项,得|x|=2.由绝对值的意义知x=±2,所以原方程的解为x=2或x=-2.
用你学到的方法解方程:2|x|-3=5.(用两种方法解)
(1)商品出售茶壶和茶杯,茶壶每只定价20元,茶杯每只定价5元,该商品制定了两种优惠方法:
①买一只茶壶赠一只茶杯;②按总价的90%付款.某顾客购买茶壶5只,茶杯若干只(不少于5只),问顾客买多少只茶杯时,两种方法付款相同.假如该顾客买了茶杯20只,哪种买法实惠
(2)某人原计划骑车以每小时12千米的速度由A地到B地,这样便可在规定的时间到达,但他因事将原计划出发的时间推迟了20分钟,只好以每小时15千米的速度前进,结果比规定时间早4分钟到达B地,求A,B两地间的距离.
(3)某工厂完成一批产品,一车间单独完成需30天,二车间单独完成需20天.
①如一车间先做若干天,然后由二车间继续做,直至完成,前后共做了25天,问一车间先做了几天?
②如一车间先做了3天后,二车间加入一起做,还需多少天才能完成? 查看习题详情和答案>>