网址:http://m.1010jiajiao.com/timu_id_431401[举报]
已知函数f(x)=ex-ax,其中a>0.
(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;
(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.
【解析】解:令.
当时单调递减;当时单调递增,故当时,取最小值
于是对一切恒成立,当且仅当. ①
令则
当时,单调递增;当时,单调递减.
故当时,取最大值.因此,当且仅当时,①式成立.
综上所述,的取值集合为.
(Ⅱ)由题意知,令则
令,则.当时,单调递减;当时,单调递增.故当,即
从而,又
所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使即成立.
【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.
查看习题详情和答案>>
设函数.
(Ⅰ) 当时,求的单调区间;
(Ⅱ) 若在上的最大值为,求的值.
【解析】第一问中利用函数的定义域为(0,2),.
当a=1时,所以的单调递增区间为(0,),单调递减区间为(,2);
第二问中,利用当时, >0, 即在上单调递增,故在上的最大值为f(1)=a 因此a=1/2.
解:函数的定义域为(0,2),.
(1)当时,所以的单调递增区间为(0,),单调递减区间为(,2);
(2)当时, >0, 即在上单调递增,故在上的最大值为f(1)=a 因此a=1/2.
查看习题详情和答案>>
已知,函数
(1)当时,求函数在点(1,)的切线方程;
(2)求函数在[-1,1]的极值;
(3)若在上至少存在一个实数x0,使>g(xo)成立,求正实数的取值范围。
【解析】本试题中导数在研究函数中的运用。(1)中,那么当时, 又 所以函数在点(1,)的切线方程为;(2)中令 有
对a分类讨论,和得到极值。(3)中,设,,依题意,只需那么可以解得。
解:(Ⅰ)∵ ∴
∴ 当时, 又
∴ 函数在点(1,)的切线方程为 --------4分
(Ⅱ)令 有
① 当即时
(-1,0) |
0 |
(0,) |
(,1) |
||
+ |
0 |
- |
0 |
+ |
|
极大值 |
极小值 |
故的极大值是,极小值是
② 当即时,在(-1,0)上递增,在(0,1)上递减,则的极大值为,无极小值。
综上所述 时,极大值为,无极小值
时 极大值是,极小值是 ----------8分
(Ⅲ)设,
对求导,得
∵,
∴ 在区间上为增函数,则
依题意,只需,即
解得 或(舍去)
则正实数的取值范围是(,)
查看习题详情和答案>>
已知函数的最小值为0,其中
(Ⅰ)求的值;
(Ⅱ)若对任意的有≤成立,求实数的最小值;
(Ⅲ)证明().
【解析】(1)解: 的定义域为
由,得
当x变化时,,的变化情况如下表:
x |
|||
- |
0 |
+ |
|
极小值 |
因此,在处取得最小值,故由题意,所以
(2)解:当时,取,有,故时不合题意.当时,令,即
令,得
①当时,,在上恒成立。因此在上单调递减.从而对于任意的,总有,即在上恒成立,故符合题意.
②当时,,对于,,故在上单调递增.因此当取时,,即不成立.
故不合题意.
综上,k的最小值为.
(3)证明:当n=1时,不等式左边==右边,所以不等式成立.
当时,
在(2)中取,得 ,
从而
所以有
综上,,
查看习题详情和答案>>