摘要:那么.当n=k+1时.(1+1)(1+)-(1+)[1+]>
网址:http://m.1010jiajiao.com/timu_id_422715[举报]
数列,满足
(1)求,并猜想通项公式。
(2)用数学归纳法证明(1)中的猜想。
【解析】本试题主要考查了数列的通项公式求解,并用数学归纳法加以证明。第一问利用递推关系式得到,,,,并猜想通项公式
第二问中,用数学归纳法证明(1)中的猜想。
①对n=1,等式成立。
②假设n=k时,成立,
那么当n=k+1时,
,所以当n=k+1时结论成立可证。
数列,满足
(1),,,并猜想通项公。 …4分
(2)用数学归纳法证明(1)中的猜想。①对n=1,等式成立。 …5分
②假设n=k时,成立,
那么当n=k+1时,
, ……9分
所以
所以当n=k+1时结论成立 ……11分
由①②知,猜想对一切自然数n均成立
查看习题详情和答案>>
已知某个命题,若当n=k(k∈N*)时该命题成立,则可推得当n=k+1时该命题也成立.现已知当n=4时该命题不成立,那么可推得下述结论中成立的个数是
①n=1时该命题不成立 ②n=2时该命题不成立 ③n=3时该命题不成立
A.0 B