摘要:于是cn=lg[2000()]=3+lg2(n+)lg0.7数列{cn}是一个递减的等差数列.因此.当且仅当cn≥0.且cn+1<0时.数列{cn}的前n项的和最大.
网址:http://m.1010jiajiao.com/timu_id_422645[举报]
已知数列{an}前n项和为Sn,且a1=2,3Sn=5an-an-1+3Sn-1(n≥2,n∈N*).
(Ⅰ)求数列{an} 的通项公式;
(Ⅱ)设bn=(2n-1)an,求数列{bn} 的前n项和为Tn;
(Ⅲ)若cn=tn[lg(2t)n+lgan+2](t>0),且数列{cn} 是单调递增数列,求实数t的取值范围.
查看习题详情和答案>>
(Ⅰ)求数列{an} 的通项公式;
(Ⅱ)设bn=(2n-1)an,求数列{bn} 的前n项和为Tn;
(Ⅲ)若cn=tn[lg(2t)n+lgan+2](t>0),且数列{cn} 是单调递增数列,求实数t的取值范围.
已知数列(an}为Sn且有a1=2,3Sn=5an-an-1+3Sn-1 (n≥2)
(I)求数列{an}的通项公式;
(Ⅱ)若bn=(2n-1)an,求数列{bn}前n和Tn
(Ⅲ)若cn=tn[lg(2t)n+lgan+2](0<t<1),且数列{cn}中的每一项总小于它后面的项,求实数t取值范围.
查看习题详情和答案>>
(I)求数列{an}的通项公式;
(Ⅱ)若bn=(2n-1)an,求数列{bn}前n和Tn
(Ⅲ)若cn=tn[lg(2t)n+lgan+2](0<t<1),且数列{cn}中的每一项总小于它后面的项,求实数t取值范围.
已知数列{an} 的前n项和为Sn ,且有a1=2,3Sn=5an-an-1+3Sn-1(n≥2).
(1)若bn=(2n-1)an,求数列{bn}的前n项和Tn;
(2)若cn=tn[lg(2t)n+lgan+2](0<t<1),且数列{cn} 中的每一项总小于它后面的项,求实数t的取值范围.
查看习题详情和答案>>
(1)若bn=(2n-1)an,求数列{bn}的前n项和Tn;
(2)若cn=tn[lg(2t)n+lgan+2](0<t<1),且数列{cn} 中的每一项总小于它后面的项,求实数t的取值范围.