摘要:所以在处取到最大值.
网址:http://m.1010jiajiao.com/timu_id_418158[举报]
已知函数,
.
(Ⅰ)若函数依次在
处取到极值.求
的取值范围;
(Ⅱ)若存在实数,使对任意的
,不等式
恒成立.求正整数
的最大值.
【解析】第一问中利用导数在在处取到极值点可知导数为零可以解得方程有三个不同的实数根来分析求解。
第二问中,利用存在实数,使对任意的
,不等式
恒成立转化为
,恒成立,分离参数法求解得到范围。
解:(1)
①
(2)不等式 ,即
,即
.
转化为存在实数,使对任意的
,不等式
恒成立.
即不等式在
上恒成立.
即不等式在
上恒成立.
设,则.
设,则
,因为
,有
.
故在区间
上是减函数。又
故存在,使得
.
当时,有
,当
时,有
.
从而在区间
上递增,在区间
上递减.
又[来源:]
所以当时,恒有
;当
时,恒有
;
故使命题成立的正整数m的最大值为5
查看习题详情和答案>>