摘要:(Ⅱ)方法1 由
网址:http://m.1010jiajiao.com/timu_id_418154[举报]
(Ⅰ)求证:
=
;
(Ⅱ)利用第(Ⅰ)问的结果证明Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1;
(Ⅲ)其实我们常借用构造等式,对同一个量算两次的方法来证明组合等式,譬如:(1+x)1+(1+x)2+(1+x)3+…+(1+x)n=
=
;,由左边可求得x2的系数为C22+C32+C42+…+Cn2,利用右式可得x2的系数为Cn+13,所以C22+C32+C42+…+Cn2=Cn+13.请利用此方法证明:(C2n0)2-(C2n1)2+(C2n2)2-(C2n3)2+…+(C2n2n)2=(-1)nC2nn.
查看习题详情和答案>>
C | m n |
n |
m |
C | m-1 n-1 |
(Ⅱ)利用第(Ⅰ)问的结果证明Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1;
(Ⅲ)其实我们常借用构造等式,对同一个量算两次的方法来证明组合等式,譬如:(1+x)1+(1+x)2+(1+x)3+…+(1+x)n=
(1+x)[1-(1+x)n] |
1-(1+x) |
(1+x)n+1-(1+x) |
x |
()某企业有3个分厂生产同一种电子产品,第一、二、三分厂的产量之比为1:2:1,用分层抽样方法(每个分厂的产品为一层)从3个分厂生产的电子产品中共取100件作使用寿命的测试,由所得的测试结果算得从第一、二、三分厂取出的产品的使用寿命的平均值分别为980h,1020h,1032h,则抽取的100件产品的使用寿命的平均值为 h.
查看习题详情和答案>>
(Ⅰ)求证:;
(Ⅱ)利用第(Ⅰ)问的结果证明Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1;
(Ⅲ)其实我们常借用构造等式,对同一个量算两次的方法来证明组合等式,譬如:(1+x)1+(1+x)2+(1+x)3+…+(1+x)n=;,由左边可求得x2的系数为C22+C32+C42+…+Cn2,利用右式可得x2的系数为Cn+13,所以C22+C32+C42+…+Cn2=Cn+13.请利用此方法证明:(C2n)2-(C2n1)2+(C2n2)2-(C2n3)2+…+(C2n2n)2=(-1)nC2nn.
查看习题详情和答案>>
(Ⅱ)利用第(Ⅰ)问的结果证明Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1;
(Ⅲ)其实我们常借用构造等式,对同一个量算两次的方法来证明组合等式,譬如:(1+x)1+(1+x)2+(1+x)3+…+(1+x)n=;,由左边可求得x2的系数为C22+C32+C42+…+Cn2,利用右式可得x2的系数为Cn+13,所以C22+C32+C42+…+Cn2=Cn+13.请利用此方法证明:(C2n)2-(C2n1)2+(C2n2)2-(C2n3)2+…+(C2n2n)2=(-1)nC2nn.
查看习题详情和答案>>
(理)若直线
(t为参数)的方向向量与直线4x+ky=1的法向量平行,则常数k= .
(文)由若干个棱长为1的正方体组成的几何体的三视图如图所示,则该几何体的体积为 .
查看习题详情和答案>>
|
(文)由若干个棱长为1的正方体组成的几何体的三视图如图所示,则该几何体的体积为
由一组样本数据(x1,y1),(x2,y2),(x3,y3)…(xn,yn)得到的回归直线方程
=bx+a,那么,下面说法不正确的是( )
? |
y |
A、直线
| ||||||||||||||||||
B、直线
| ||||||||||||||||||
C、直线
| ||||||||||||||||||
D、直线
|