网址:http://m.1010jiajiao.com/timu_id_40628[举报]
一、选择题:
ADBAA BCCDC
二、填空题:
11. ; 12. ; 13.
14(i) ③⑤ (ii) ②⑤ 15.(i)7; (ii).
三、解答题:
16.解:(Ⅰ)
…………5分
由成等比数列,知不是最大边
…………6分
(Ⅱ)由余弦定理
得ac=2 …………11分
= …………12分
17.解:(Ⅰ)第一天通过检查的概率为, ………………………2分
第二天通过检查的概率为, …………………………4分
由相互独立事件得两天全部通过检查的概率为. ………………6分
(Ⅱ)第一天通过而第二天不通过检查的概率为, …………8分
第二天通过而第一天不通过检查的概率为, ………………10分
由互斥事件得恰有一天通过检查的概率为. ……………………12分
18.解:方法一
(Ⅰ)取的中点,连结,由知,又,故,所以即为二面角的平面角.
在△中,,,,
由余弦定理有
,
所以二面角的大小是. (6分)
(Ⅱ)由(Ⅰ)知道平面,故平面平面,故在平面上的射影一定在直线上,所以点到平面的距离即为△的边上的高.
故. …(12分)
19.解:(Ⅰ)设
则 ……①
……②
∴②-①得 2d2=0,∴d=p=0
∴ …………6分
(Ⅱ)当an=n时,恒等式为[S(1,n)]2=S(3,n)
证明:
相减得:
∴
相减得:
又
又
∴ ………………………………13分
20.解:(Ⅰ)∵,∴,
又∵,∴,
∴,
∴椭圆的标准方程为. ………(3分)
当的斜率为0时,显然=0,满足题意,
当的斜率不为0时,设方程为,
代入椭圆方程整理得:.
,,.
则
,
而
∴,从而.
综合可知:对于任意的割线,恒有. ………(8分)
(Ⅱ),
即:,
当且仅当,即(此时适合于的条件)取到等号.
∴三角形△ABF面积的最大值是. ………………………………(13分)
21.解:(Ⅰ) ……………………………………………4分
(Ⅱ)或者……………………………………………8分
(Ⅲ)略 ……………………………………13分
(本小题满分13分)有一问题,在半小时内,甲能解决它的概率是0.5,乙能解决它的概率是,
如果两人都试图独立地在半小时内解决它,计算:w.w.w.k.s.5.u.c.o.m
(1)两人都未解决的概率;
(2)问题得到解决的概率。
查看习题详情和答案>>(本小题满分13分) 现有一批货物由海上从A地运往B地,已知货船的最大航行速度为35海里/小时,A地至B地之间的航行距离约为500海里,每小时的运输成本由燃料费和其余费用组成,轮船每小时的燃料费用与轮船速度的平方成正比(比例系数为0.6),其余费用为每小时960元.
(1)把全程运输成本y(元)表示为速度x(海里/小时)的函数;
(2)为了使全程运输成本最小,轮船应以多大速度行驶?
查看习题详情和答案>>