网址:http://m.1010jiajiao.com/timu_id_40298[举报]
Ⅰ选择题
1.C 2. B 3. B 4.B 5.A 6.C 7.A 8.C 9.D 10.A 11.C 12.C
Ⅱ非选择题
13. 14. 15. 16. (2) (3)
17. 解: (4分)
(1)增区间为: , 减区间为: (8分)
(2) (12分)
18.解:因骰子是均匀的,所以骰子各面朝下的可能性相等,设其中一枚骰子朝下的面上的数字为x,另一枚骰子朝下的面上的数字为y,则的取值如下表:
x+y y
x
1
2
3
5
1
2
3
4
6
2
3
4
5
7
3
4
5
6
8
5
6
7
8
10
从表中可得: (8分)
(2)p(=奇数)
………………12分
19.解:(1)
∴ (2分)
又 恒成立 ∴
∴ ∴
∴ (6分)
(2)
∴
∴ ①)当 时, 解集为
②当 时,解集为
③当 时,解集为 (12分)
20.解:PD⊥面ABCD ∴DA、DC、DP 相互垂直
建立如图所示空间直角坐标系Oxyz
(1)
∴
∴ ∴PC⊥DA , PC⊥DE
∴PC⊥面ADE (4分)
(2)∵PD⊥面ABCD PC⊥平面ADE
∴PD与PC夹角为所求
∴ 所求二面角E-AD-B的大小为 (8分)
(3)由(2)得:四边形ADFE为直角梯形,且 EF=1,DF=,AD=2
∴
∴ 所求部分体积 (12分)
21.解:(1)
为等比数列 (4分)
(2) (6分)
(3) (7分)
(10分)
∴M≥6 (12分)
22.解:(1)直线AB的方程为:与抛物线的切点设为T且
∴
∴抛物线c的方程为: (3分)
⑵设直线l的方程为: 易如:
设,
①M为AN中点
由 (Ⅰ)、(Ⅱ)联解,得 代入(Ⅱ)
4
∴直线l的方程为 : (7分)
②
(9分)
FM为∠NFA的平分线
且 (11分)
又
(14分)
(1)若a=-1,解方程f(x)=1;
(2)若函数f(x)在R上单调递增,求实数a的取值范围;
(3)是否存在实数a,使得g(x)=f(x)-x|x|在R上是奇函数或是偶函数?若存在,求出a的值,若不存在,请说明理由.
①f(x)的图象与f(-x)关于y轴对称.
②f(x)的图象与-f(-x)的图象关于原点对称.
③y=|lgx|与y=lg|x|的定义域相同,它们都只有一个零点.
④二次函数f(x)满足f(2-x)=f(2+x)并且有最小值,则f(0)<f(5).
⑤若定义在R上的奇函数f(x),有f(3+x)=-f(x),则f(2010)=0
其中所有正确命题的序号是