网址:http://m.1010jiajiao.com/timu_id_395393[举报]
1.D 2.B 3.B 4.B 5.A
6.AB 7.ABD 8. BCD 9.ACD
10. (1)
(2)’
11. (1)3.0(2.6―3.4)
(2)如图所示(2分) a=1/(
(3)实验前未平衡摩擦力
12.(1)以滑板和运动员为研究对象,其受力如图所示由共点力平衡条件可得
①
②
由①、②联立,得
F =810N
(2)
得m/s
(3)水平牵引力的功率
P=Fv
=4050 W
13. (1)根据动能定理,主发动机在嫦娥一号卫星进入地月转移轨道过程中对卫星做的功……………………………………………………………6分
(2)设“嫦娥一号卫星”在圆轨道І上运动时距月球表面的高度为h,根据万有引力定律和向心力公式有
……………4分
解得:……………………………………………4分
(3)设“嫦娥一号卫星”在近月点进行第一次制动后,在圆轨道І上运动的速度为u1,则
………………………………………………………1分
解得:…………………………………………………………1分
设“嫦娥一号卫星”在通过近月点脱离月球引力束缚飞离月球的速度为u2,根据机械能守恒定律
=0…………………………………………………………1分
解得:u2=………………………………………………………1分
所以,“嫦娥一号卫星”在近月点进行第一次制动后的速度u应满足的条件是:
……………………………………………2分
14. 解:(1)a =
Rsinθ= v0t
R-Rcosθ=at2
由以上三式得v0 =
(2)由(1)结论得粒子从A点出发时的动能为
m v02 = =
则经过P点时的动能为
Ek=Eq(R-Rcosθ)+m v02 = EqR (5-3cosθ)
可以看出,当θ从0°变化到180°,接收屏上电荷的动能逐渐增大,因此D点接收到的电荷的末动能最小,C点接收到的电荷的末动能最大。
最小动能为:
EkD=Eq(R-Rcosθ)+m v0D2 = EqR (5-3cos60°) = EqR
最大动能为:
EkC=Eq(R-Rcosθ)+m v
15.解:(1)A与C间的摩擦力为
(1分)
B与C间的摩擦力为
(1分)
推力F从零逐渐增大,当增大到100N时,物块A开始向右移动压缩弹簧(此时B仍然保持静止),设压缩量为x,则力 (1分)
当x=,此时B将缓慢地向右移动。(1分)
B移动
作出力F随A位移的变化图线如答图6所示。(2分)
(2)在物块B移动前,力F作用于物块A,压缩弹簧使弹簧储存了弹性势能E0,物块A移动了s=
(3)撤去力F之后,AB两物块给木板C的摩擦力的合力为零,故在物块AB滑离木板C之前,C仍静止不动。
由题可知,始终有 (1分)
当物块B在木板C上向右滑动了
并且两物体的相对位移△s=
… …
… 3 (2分)
由123式求出物块B滑离木板C时A物块的速度为vA=
对A:f=mAaA
aA=
滑离C sA=VAt-aAt2/2 sc=act2/2
所以0.6= VAt-aAt2/2 -act2/2 t=0.2 vc =act=5×0.2=
16.答案.(1) A物体沿斜面下滑时有
∴
m/s2 (1分)
B物体沿斜面下滑时有
∴
(1分)
综上分析可知,撤去固定A、B的外力后,物体B恰好静止于斜面上,物体A将沿斜面向下做匀加速直线运动. (1分)
由运动学公式得A与B第一次碰撞前的速度
(1分)
由于AB碰撞后交换速度,故AB第一次碰后瞬时,B的速率 (1分)
(2)从AB开始运动到第一次碰撞用时
(1分)
两物体相碰后,A物体的速度变为零,以后再做匀加速运动,而B物体将以的速度沿斜面向下做匀速直线运动.
(1分)
设再经t2时间相碰,则有
(1分)
解之可得t2=0.8s (1分)
故从A开始运动到两物体第二次相碰,共经历时间t=t1+t2=0.4+0.8=1.2s (2分)
(3)从第2次碰撞开始,每次A物体运动到与B物体碰撞时,速度增加量均为Δv=at2=2.5×
第一次碰后: vB1=
第二次碰后: vB2=
第三次碰后: vB3=
……
第n次碰后: vBn=nm/s
每段时间内,B物体都做匀速直线运动,则第n次碰前所运动的距离为
sB=[1+2+3+……+(n-1)]×t2= m (n=1,2,3,…,n-1) (3分)
A物体比B物体多运动L长度,则
sA
= L+sB=[0.2+]m (2分)

(1)求卫星从“48小时轨道”的近地点P进入”地月转移轨道”过程中主发动机对“嫦娥一号”卫星做的功(不计地球引力做功和卫星质量变化);
(2)求“嫦娥一号”卫星在绕月球圆形工作轨道I运动时距月球表面的高度.
(1)求卫星从“48小时轨道”的近地点P进入“地月转移轨道”过程中主发动机对“嫦娥一号卫星”做的功(不计地球引力做功和卫星质量变化);
(2)求“嫦娥一号卫星”在绕月球圆形工作轨道?运动时距月球表面的高度;
(3)理论证明,质量为m的物体由距月球无限远处无初速释放,它在月球引力的作用下运动至距月球中心为r处的过程中,月球引力对物体所做的功可表示为W=Gm月m/r.为使“嫦娥一号卫星”在近月点Q进行第一次制动后能成为月球的卫星,且与月球表面的距离不小于圆形工作轨道?的高度,最终进入圆形工作轨道,其第一次制动后的速度大小应满足什么条件?

如图所示为我国“嫦娥一号”卫星从发射到进入月球工作轨道的过程示意图.在发射过程中,经过一系列的加速和变轨,卫星沿绕地球“48小时轨道”在抵达近地点P时,主发动机启动,“嫦娥一号”卫星的速度在很短时间内由v1提高到v2,进入“地月转移轨道”,开始了从地球向月球的飞越.“嫦娥一号”卫星在“地月转移轨道”上经过114小时飞行到达近月点Q时,需要及时制动,使其成为月球卫星.之后,又在绕月球轨道上的近月点Q经过两次制动,最终进入绕月球的圆形工作轨道I.已知“嫦娥一号”卫星质量为m0,在绕月球的圆形工作轨道I上运动的周期为T,月球的半径r月,月球的质量为m月,万有引力恒量为G.
![]() |
(1)求卫星从“48小时轨道”的近地点P进入”地月转移轨道”过程中主发动机对“嫦娥一号”卫星做的功(不计地球引力做功和卫星质量变化);
(2)求“嫦娥一号”卫星在绕月球圆形工作轨道I运动时距月球表面的高度;
(3)理论证明,质量为m的物体由距月球无限远处无初速释放,它在月球引力的作用下运动至距月球中心为r处的过程中,月球引力对物体所做的功可表示为W= G.为使“嫦娥一号”卫星在近月点Q进行第一次制动后能成为月球的卫星,且与月球表面的距离不小于圆形工作轨道I的高度,最终进入圆形工作轨道,其第一次制动后的速度大小应满足什么条件?
(1)求卫星从“48小时轨道”的近地点P进入“地月转移轨道”过程中主发动机对“嫦娥一号卫星”做的功(不计地球引力做功和卫星质量变化);
(2)求“嫦娥一号卫星”在绕月球圆形工作轨道?运动时距月球表面的高度;
(3)理论证明,质量为m的物体由距月球无限远处无初速释放,它在月球引力的作用下运动至距月球中心为r处的过程中,月球引力对物体所做的功可表示为W=Gm月m/r.为使“嫦娥一号卫星”在近月点Q进行第一次制动后能成为月球的卫星,且与月球表面的距离不小于圆形工作轨道?的高度,最终进入圆形工作轨道,其第一次制动后的速度大小应满足什么条件?

查看习题详情和答案>>
(1)求卫星从“48小时轨道”的近地点P进入“地月转移轨道”过程中主发动机对“嫦娥一号卫星”做的功(不计地球引力做功和卫星质量变化);
(2)求“嫦娥一号卫星”在绕月球圆形工作轨道?运动时距月球表面的高度;
(3)理论证明,质量为m的物体由距月球无限远处无初速释放,它在月球引力的作用下运动至距月球中心为r处的过程中,月球引力对物体所做的功可表示为W=Gm月m/r.为使“嫦娥一号卫星”在近月点Q进行第一次制动后能成为月球的卫星,且与月球表面的距离不小于圆形工作轨道?的高度,最终进入圆形工作轨道,其第一次制动后的速度大小应满足什么条件?

查看习题详情和答案>>