摘要:∴.同理可证 .∴
网址:http://m.1010jiajiao.com/timu_id_390726[举报]
某同学用《几何画板》研究抛物线的性质:打开《几何画板》软件,绘制某抛物线,在抛物线上任意画一个点,度量点的坐标,如图.
(Ⅰ)拖动点,发现当时,,试求抛物线的方程;
(Ⅱ)设抛物线的顶点为,焦点为,构造直线交抛物线于不同两点、,构造直线、分别交准线于、两点,构造直线、.经观察得:沿着抛物线,无论怎样拖动点,恒有.请你证明这一结论.
(Ⅲ)为进一步研究该抛物线的性质,某同学进行了下面的尝试:在(Ⅱ)中,把“焦点”改变为其它“定点”,其余条件不变,发现“与不再平行”.是否可以适当更改(Ⅱ)中的其它条件,使得仍有“”成立?如果可以,请写出相应的正确命题;否则,说明理由.
查看习题详情和答案>>
某同学用《几何画板》研究抛物线的性质:打开《几何画板》软件,绘制某抛物线,在抛物线上任意画一个点,度量点的坐标,如图.
(Ⅰ)拖动点,发现当时,,试求抛物线的方程;
(Ⅱ)设抛物线的顶点为,焦点为,构造直线交抛物线于不同两点、,构造直线、分别交准线于、两点,构造直线、.经观察得:沿着抛物线,无论怎样拖动点,恒有.请你证明这一结论.
(Ⅲ)为进一步研究该抛物线的性质,某同学进行了下面的尝试:在(Ⅱ)中,把“焦点”改变为其它“定点”,其余条件不变,发现“与不再平行”.是否可以适当更改(Ⅱ)中的其它条件,使得仍有“”成立?如果可以,请写出相应的正确命题;否则,说明理由.