摘要:24.已知函数(.)在和处取到极值.
网址:http://m.1010jiajiao.com/timu_id_390594[举报]
已知函数f(x)=x(x-a)(x-b),点A(s,f(s)),B(t,f(t)).
(1)若a=0,b=3,函数f(x)在(t,t+3)上既能取到极大值,又能取到极小值,求t的取值范围;
(2)当a=0时,
+lnx+1≥0对任意的x∈[
,+∞)恒成立,求b的取值范围;
(3)若0<a<b,函数f(x)在x=s和x=t处取得极值,且a+b<2
,O是坐标原点,证明:直线OA与直线OB不可能垂直.
查看习题详情和答案>>
(1)若a=0,b=3,函数f(x)在(t,t+3)上既能取到极大值,又能取到极小值,求t的取值范围;
(2)当a=0时,
f(x) |
x |
1 |
2 |
(3)若0<a<b,函数f(x)在x=s和x=t处取得极值,且a+b<2
3 |
已知函数f(x)=x3+ax2+bx+c的图象经过原点,且在x=1处取得极值,直线y=2x+3到曲线y=f(x)在原点处的切线所成的角为45°.
(1)求f(x)的解析式;
(2)若对于任意实数α和β恒有不等式|f(2sinα)-f(2sinβ)|≤m成立,求m的最小值.
查看习题详情和答案>>
(1)求f(x)的解析式;
(2)若对于任意实数α和β恒有不等式|f(2sinα)-f(2sinβ)|≤m成立,求m的最小值.
查看习题详情和答案>>