网址:http://m.1010jiajiao.com/timu_id_390539[举报]
已知
(1)求函数在上的最小值
(2)对一切的恒成立,求实数a的取值范围
(3)证明对一切,都有成立
【解析】第一问中利用
当时,在单调递减,在单调递增,当,即时,,
第二问中,,则设,
则,单调递增,,,单调递减,,因为对一切,恒成立,
第三问中问题等价于证明,,
由(1)可知,的最小值为,当且仅当x=时取得
设,,则,易得。当且仅当x=1时取得.从而对一切,都有成立
解:(1)当时,在单调递减,在单调递增,当,即时,,
…………4分
(2),则设,
则,单调递增,,,单调递减,,因为对一切,恒成立, …………9分
(3)问题等价于证明,,
由(1)可知,的最小值为,当且仅当x=时取得
设,,则,易得。当且仅当x=1时取得.从而对一切,都有成立
查看习题详情和答案>>
已知,设和是方程的两个根,不等式对任意实数恒成立;函数有两个不同的零点.求使“P且Q”为真命题的实数的取值范围.
【解析】本试题主要考查了命题和函数零点的运用。由题设x1+x2=a,x1x2=-2,
∴|x1-x2|==.
当a∈[1,2]时,的最小值为3. 当a∈[1,2]时,的最小值为3.
要使|m-5|≤|x1-x2|对任意实数a∈[1,2]恒成立,只须|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+=0的判别式
Δ=4m2-12(m+)=4m2-12m-16>0,
得m<-1或m>4.
可得到要使“P∧Q”为真命题,只需P真Q真即可。
解:由题设x1+x2=a,x1x2=-2,
∴|x1-x2|==.
当a∈[1,2]时,的最小值为3.
要使|m-5|≤|x1-x2|对任意实数a∈[1,2]恒成立,只须|m-5|≤3,即2≤m≤8.
由已知,得f(x)=3x2+2mx+m+=0的判别式
Δ=4m2-12(m+)=4m2-12m-16>0,
得m<-1或m>4.
综上,要使“P∧Q”为真命题,只需P真Q真,即
解得实数m的取值范围是(4,8]
查看习题详情和答案>>
已知函数.
(1)试求的值域;
(2)设,若对, ,恒 成立,试求实数的取值范围
【解析】第一问利用
第二问中若,则,即当时,,又由(Ⅰ)知
若对,,恒有成立,即转化得到。
解:(1)函数可化为, ……5分
(2) 若,则,即当时,,又由(Ⅰ)知. …………8分
若对,,恒有成立,即,
,即的取值范围是
查看习题详情和答案>>