摘要:②当-<-1,即n>2时. ymin==6.解得n=4.
网址:http://m.1010jiajiao.com/timu_id_3811[举报]
已知函数f(x)=alnx-
,a∈R.
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与直线x+2y=0垂直,求a的值;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)当a=1,且x≥2时,证明:f(x-1)≤2x-5. 查看习题详情和答案>>
1 | x |
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与直线x+2y=0垂直,求a的值;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)当a=1,且x≥2时,证明:f(x-1)≤2x-5. 查看习题详情和答案>>
(满分12分)
对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.
已知函数f(x)=ax2+(b+1)x+b-1(a≠0).
(1)当a=1,b=-2时,求f(x)的不动点;
(2)若对于任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围.
查看习题详情和答案>>
已知函数,a∈R.
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与直线x+2y=0垂直,求a的值;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)当a=1,且x≥2时,证明:f(x-1)≤2x-5.
查看习题详情和答案>>
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与直线x+2y=0垂直,求a的值;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)当a=1,且x≥2时,证明:f(x-1)≤2x-5.
查看习题详情和答案>>