摘要:∴g2(x)=f(g1+1=x+2.
网址:http://m.1010jiajiao.com/timu_id_3805[举报]
已知f(x)=log
x,当点M(x,y)在y=f(x)的图象上运动时,点N(x-2,ny)在函数y=gn(x)的图象上运动(n∈N*).
(1)求y=gn(x)的表达式;
(2)若方程g1(x)=g2(x-2+a)有实根,求实数a的取值范围;
(3)设Hn(x)=2gn(x),函数F(x)=H1(x)+g1(x)(0<a≤x≤b)的值域为[log2
,log2
],求实数a,b的值.
查看习题详情和答案>>
1 |
2 |
(1)求y=gn(x)的表达式;
(2)若方程g1(x)=g2(x-2+a)有实根,求实数a的取值范围;
(3)设Hn(x)=2gn(x),函数F(x)=H1(x)+g1(x)(0<a≤x≤b)的值域为[log2
| |||
b+2 |
| |||
a+2 |
已知函数f(x)=x+1,设g1(x)=f(x),gn(x)=f(gn-1(x))(n>1,n∈N*)
(1)求g2(x),g3(x)的表达式,并猜想gn(x)(n∈N*)的表达式(直接写出猜想结果)
(2)若关于x的函数y=x2+
gi(x)(n∈N*)在区间(-∞,-1]上的最小值为6,求n的值.
(符号“
”表示求和,例如:
i=1+2+3+…+n.)
查看习题详情和答案>>
(1)求g2(x),g3(x)的表达式,并猜想gn(x)(n∈N*)的表达式(直接写出猜想结果)
(2)若关于x的函数y=x2+
n |
i=1 |
(符号“
n |
i=1 |
n |
i=1 |
已知函数f(x)=cos(x-
).先把y=f(x)的图象上所有点向左平移
个单位长度,再把所得图象上所有点的横坐标缩短到原来的
(纵坐标不变)得到函数y=g(x)的图象.
(1)写出函数g(x)的解析式;
(2)已知f(α)=
,α∈(
,
),求f(2α)的值;
(3)设g1(x),g2(x)是定义域为R的两个函数,满足g2(x)=g1(x+θ),其中θ是常数,且θ∈[0,π].请设计一个函数y=g1(x),给出一个相应的θ值,使得g(x)=g1(x)•g2(x).并予以证明.
查看习题详情和答案>>
π |
4 |
π |
4 |
1 |
2 |
(1)写出函数g(x)的解析式;
(2)已知f(α)=
3 |
5 |
π |
2 |
3π |
2 |
(3)设g1(x),g2(x)是定义域为R的两个函数,满足g2(x)=g1(x+θ),其中θ是常数,且θ∈[0,π].请设计一个函数y=g1(x),给出一个相应的θ值,使得g(x)=g1(x)•g2(x).并予以证明.