摘要:(2) 由公式 ⑤ 1分可得
网址:http://m.1010jiajiao.com/timu_id_369991[举报]
(1)2008年度诺贝尔物理学奖授予美国科学家南部阳一郎和两位日本科学家小林诚、利川敏英.到目前为止,人们仍无法解释140亿年前宇宙大爆炸时宇宙起源的幕后力量.如果宇宙大爆炸产生了相同的物质和反物质,它们应当互相抵消,但这并没有发生,每100亿个反物质粒子就有一个额外的物质粒子发生了微小的偏移.这种对称破缺可能是使我们宇宙得以幸存的原因.现在,科学家正在设法寻找“反物质”,所谓“反物质”是由“反粒子”构成的,“反粒子”与其对应的正粒子具有相同的质量和相同的电荷量,但电荷的电性相反,据此,若有反α粒子,它的质量数为 ,电荷数为 .
(2)经过一年多的修复,大型强子对撞机于2009年11月20日首次让质子在环形加速器全程环绕,23 日同时发射的两束方向相反的质子流在4个探测器上顺利地实现了对撞.大型强子对撞机“开足马力”后,把数以百万计的粒子加速至将近每秒钟30万公里,相当于光速的99.99%.这些接近光速的粒子对撞后,会创造出1百多亿年前与宇宙大爆炸之后万亿分之一秒时的状态类似的条件,科学家期望能从中发现占宇宙质量96%的暗物质和暗能量的踪迹,从而揭开宇宙起源之谜.设两束质子束对心正碰后,能量全部以光子的形式向外辐射,试求所辐射光子的频率.(已知质子质量为1.67×10-27㎏,普朗克常量h=6.63×10-34J?s,忽略相对论效应).
查看习题详情和答案>>
(2)经过一年多的修复,大型强子对撞机于2009年11月20日首次让质子在环形加速器全程环绕,23 日同时发射的两束方向相反的质子流在4个探测器上顺利地实现了对撞.大型强子对撞机“开足马力”后,把数以百万计的粒子加速至将近每秒钟30万公里,相当于光速的99.99%.这些接近光速的粒子对撞后,会创造出1百多亿年前与宇宙大爆炸之后万亿分之一秒时的状态类似的条件,科学家期望能从中发现占宇宙质量96%的暗物质和暗能量的踪迹,从而揭开宇宙起源之谜.设两束质子束对心正碰后,能量全部以光子的形式向外辐射,试求所辐射光子的频率.(已知质子质量为1.67×10-27㎏,普朗克常量h=6.63×10-34J?s,忽略相对论效应).
(1)2008年度诺贝尔物理学奖授予美国科学家南部阳一郎和两位日本科学家小林诚、利川敏英.到目前为止,人们仍无法解释140亿年前宇宙大爆炸时宇宙起源的幕后力量.如果宇宙大爆炸产生了相同的物质和反物质,它们应当互相抵消,但这并没有发生,每100亿个反物质粒子就有一个额外的物质粒子发生了微小的偏移.这种对称破缺可能是使我们宇宙得以幸存的原因.现在,科学家正在设法寻找“反物质”,所谓“反物质”是由“反粒子”构成的,“反粒子”与其对应的正粒子具有相同的质量和相同的电荷量,但电荷的电性相反,据此,若有反α粒子,它的质量数为______,电荷数为______.
(2)经过一年多的修复,大型强子对撞机于2009年11月20日首次让质子在环形加速器全程环绕,23 日同时发射的两束方向相反的质子流在4个探测器上顺利地实现了对撞.大型强子对撞机“开足马力”后,把数以百万计的粒子加速至将近每秒钟30万公里,相当于光速的99.99%.这些接近光速的粒子对撞后,会创造出1百多亿年前与宇宙大爆炸之后万亿分之一秒时的状态类似的条件,科学家期望能从中发现占宇宙质量96%的暗物质和暗能量的踪迹,从而揭开宇宙起源之谜.设两束质子束对心正碰后,能量全部以光子的形式向外辐射,试求所辐射光子的频率..
查看习题详情和答案>>
(2)经过一年多的修复,大型强子对撞机于2009年11月20日首次让质子在环形加速器全程环绕,23 日同时发射的两束方向相反的质子流在4个探测器上顺利地实现了对撞.大型强子对撞机“开足马力”后,把数以百万计的粒子加速至将近每秒钟30万公里,相当于光速的99.99%.这些接近光速的粒子对撞后,会创造出1百多亿年前与宇宙大爆炸之后万亿分之一秒时的状态类似的条件,科学家期望能从中发现占宇宙质量96%的暗物质和暗能量的踪迹,从而揭开宇宙起源之谜.设两束质子束对心正碰后,能量全部以光子的形式向外辐射,试求所辐射光子的频率..
查看习题详情和答案>>
(1)2008年度诺贝尔物理学奖授予美国科学家南部阳一郎和两位日本科学家小林诚、利川敏英.到目前为止,人们仍无法解释140亿年前宇宙大爆炸时宇宙起源的幕后力量.如果宇宙大爆炸产生了相同的物质和反物质,它们应当互相抵消,但这并没有发生,每100亿个反物质粒子就有一个额外的物质粒子发生了微小的偏移.这种对称破缺可能是使我们宇宙得以幸存的原因.现在,科学家正在设法寻找“反物质”,所谓“反物质”是由“反粒子”构成的,“反粒子”与其对应的正粒子具有相同的质量和相同的电荷量,但电荷的电性相反,据此,若有反α粒子,它的质量数为______,电荷数为______.
(2)经过一年多的修复,大型强子对撞机于2009年11月20日首次让质子在环形加速器全程环绕,23 日同时发射的两束方向相反的质子流在4个探测器上顺利地实现了对撞.大型强子对撞机“开足马力”后,把数以百万计的粒子加速至将近每秒钟30万公里,相当于光速的99.99%.这些接近光速的粒子对撞后,会创造出1百多亿年前与宇宙大爆炸之后万亿分之一秒时的状态类似的条件,科学家期望能从中发现占宇宙质量96%的暗物质和暗能量的踪迹,从而揭开宇宙起源之谜.设两束质子束对心正碰后,能量全部以光子的形式向外辐射,试求所辐射光子的频率..
查看习题详情和答案>>
(2)经过一年多的修复,大型强子对撞机于2009年11月20日首次让质子在环形加速器全程环绕,23 日同时发射的两束方向相反的质子流在4个探测器上顺利地实现了对撞.大型强子对撞机“开足马力”后,把数以百万计的粒子加速至将近每秒钟30万公里,相当于光速的99.99%.这些接近光速的粒子对撞后,会创造出1百多亿年前与宇宙大爆炸之后万亿分之一秒时的状态类似的条件,科学家期望能从中发现占宇宙质量96%的暗物质和暗能量的踪迹,从而揭开宇宙起源之谜.设两束质子束对心正碰后,能量全部以光子的形式向外辐射,试求所辐射光子的频率..
查看习题详情和答案>>
由理论分析可得,弹簧的弹性势能公式为EP=
kx2(式中k为弹簧的劲度系数,x为弹簧的形变量).为验证这一结论,A、B两位同学设计了如下的实验:
①首先他们都进行了图甲所示的实验:将一根轻质弹簧竖直挂起,在弹簧的另一端挂上一个已知质量为m的小铁球,稳定后测得弹簧伸长量为d;
②A同学完成步骤①后,接着进行了如图乙所示的实验:将这根弹簧竖直地固定在水平桌面上,并把小铁球放在弹簧上,然后竖直地套上一根带有插销孔的长透明塑料管,利用插销压缩弹簧;拔掉插销时,弹簧对小铁球做功,使小铁球弹起,测得弹簧的压缩量为x时,小铁球上升的最大高度为H.
③B同学完成步骤①后,接着进行了如图丙所示的实验.将这根弹簧放在一光滑水平桌面上,一端固定在竖直墙上,另一端被小球压缩,测得压缩量为x,释放弹簧后,小球从高为h的桌面上水平抛出,抛出的水平距离为L.
(1)A、B两位同学进行图甲所示实验是为了确定物理量: ,用m、d、g表示所求的物理量: .
(2)如果EP=
kx2成立,那么A同学测出的物理量x与d、H的关系式是x= ;B同学测出的物理量x与d、h、L的关系式是x= .
查看习题详情和答案>>
1 |
2 |
①首先他们都进行了图甲所示的实验:将一根轻质弹簧竖直挂起,在弹簧的另一端挂上一个已知质量为m的小铁球,稳定后测得弹簧伸长量为d;
②A同学完成步骤①后,接着进行了如图乙所示的实验:将这根弹簧竖直地固定在水平桌面上,并把小铁球放在弹簧上,然后竖直地套上一根带有插销孔的长透明塑料管,利用插销压缩弹簧;拔掉插销时,弹簧对小铁球做功,使小铁球弹起,测得弹簧的压缩量为x时,小铁球上升的最大高度为H.
③B同学完成步骤①后,接着进行了如图丙所示的实验.将这根弹簧放在一光滑水平桌面上,一端固定在竖直墙上,另一端被小球压缩,测得压缩量为x,释放弹簧后,小球从高为h的桌面上水平抛出,抛出的水平距离为L.
(1)A、B两位同学进行图甲所示实验是为了确定物理量:
(2)如果EP=
1 |
2 |
根据单摆周期公式,可以通过实验测量当地的重力加速度.如图1所示,将细线的上端固定在铁架台上,下端系一小钢球,就做成了单摆.
(1)用游标卡尺测量小钢球直径,示数如图2所示,读数为 mm.
(2)某同学分别选用四种材料不同、直径相同的实心球做实验,各组实验的测量数据如下,若要计算当地的重力加速度,应选用第 组实验数据
(3)甲同学准确无误地完成实验,作出了T2-L图象为OM,乙同学也进行了与甲同学同样的实验,但实验后他发现测量摆长时忘了加上摆球的半径,则该同学作出的T2-L图象为图3中的 ;
A、虚线①,不平行实线OM B、虚线②,平行实线OM
C、虚线③,平行实线OM D、虚线④,不平行实线OM
(4)在利用本实验测重力加速度过程中,若测得的g 值偏小,则可能的原因是以下各项中的 .
A.将振动次数N误记为(N+1); B.由于阻力使振幅逐渐变小
C.摆球质量太大 D.未加小球半径,而将摆线长作为摆长.
查看习题详情和答案>>
(1)用游标卡尺测量小钢球直径,示数如图2所示,读数为
组别 | 摆球材料 | 摆长L/m | 最大摆角 | 全振动次数 N |
A | 铜 | 0.40 | 15° | 20 |
B | 铁 | 1.00 | 5° | 50 |
C | 铝 | 0.40 | 15° | 10 |
D | 木 | 1.00 | 5° | 50 |
(3)甲同学准确无误地完成实验,作出了T2-L图象为OM,乙同学也进行了与甲同学同样的实验,但实验后他发现测量摆长时忘了加上摆球的半径,则该同学作出的T2-L图象为图3中的
A、虚线①,不平行实线OM B、虚线②,平行实线OM
C、虚线③,平行实线OM D、虚线④,不平行实线OM
(4)在利用本实验测重力加速度过程中,若测得的g 值偏小,则可能的原因是以下各项中的
A.将振动次数N误记为(N+1); B.由于阻力使振幅逐渐变小
C.摆球质量太大 D.未加小球半径,而将摆线长作为摆长.