网址:http://m.1010jiajiao.com/timu_id_364801[举报]
一、选择题
1. B 2. C 3. A 4. D 5. C 6. D 7. B 8. C 9. A 10. D
二、填空题
11. 192 12. 286 13.
14.
15.
840 16. 
三、解答题
17. (本题12分)
解:(I)
2分


(II)
8分
由已知条件
根据正弦定理,得
10分
12分
18. (本题12分)
解:(I)在7人中选出3人,总的结果数是
种, (2分)
记“被选中的3人中至多有1名女生”为事件A,则A包含两种情形:
①被选中的是1名女生,2名男生的结果数是
,
②被选中的是3名男生的结果数是
4分
至多选中1名女生的概率为
6分
(II)由题意知随机变量
可能的取值为:0,1,2,3,则有
,
8分
∴

0
1
2
3
P



10分
∴
的数学期望
12分
19. (本题12分)
解:(I)连接PO,以OA,OB,OP所在的直线为x轴,y轴,z轴
建立如图所示的空间直角坐标系。 2分
∵正四棱锥的底面边长和侧棱长都是2。
∴
∴



(II)∵
∴
是平面PDB的一个法向量。 8分
由(I)得
设平面BMP的一个法向量为
则由
,得
,不妨设c=1
得平面BMP的一个法向量为
10分

∵二面角M―PB―D小于90°
∴二面角M―PB―D的余弦值为
12分
20. (本题12分)
解:(I)由已知得
2分

由
,得 4分

即
。解得k=50或
(舍去)
6分
(II)由
,得
8分
9分
是等差数列
则
11分
12分
21. (本题14分)
解:(I)依题意得
2分
把
解得
∴椭圆的方程为
4分
(II)由(I)得
,设
,如图所示,
∵M点在椭圆上,
∴
①
∵M点异于顶点A、B,
∴
由P、A、M三点共线,可得
,
从而
7分
∴
② 8分
将①式代入②式化简得
10分
∵
∴
12分
于是∠MBP为锐角,从而∠MBN为钝角,
∴点B在以MN为直径的圆内。 14分

22. (本题14分)
解:(I)
,
令
2分

而
∴当
4分
(II)设函数g(x)在[0,2]上的值域是A,
∵若对任意
∴
6分

①当
,
∴函数
上单调递减。
∵
∴
; 8分
②当
令
(舍去) 9分
(i)当
时,
的变化如下表:

(ii)当
∴函数g(x)在(0,2)上单调递减。

综上可知,实数a的取值范围是
(1)求函数y=T(x2)和y=(T(x))2的解析式;
(2)是否存在实数a,使得T(x)+a2=T(x+a)恒成立,若存在,求出a的值,若不存在,请说明理由;
(3)定义Tn+1(x)=Tn(T(x)),且T1(x)=T(x),(n∈N*)
①当
已知下面正确的命题:当
②若方程T4(x)=kx恰有15个不同的实数根,确定k的取值;并求这15个不同的实数根的和.
查看习题详情和答案>>
|
(1)求函数y=T(x2)和y=(T(x))2的解析式;
(2)是否存在实数a,使得T(x)+a2=T(x+a)恒成立,若存在,求出a的值,若不存在,请说明理由;
(3)定义Tn+1(x)=Tn(T(x)),且T1(x)=T(x),(n∈N*)
①当x∈[ 0 ,
| 1 |
| 16 |
已知下面正确的命题:当x∈[
| i-1 |
| 16 |
| i+1 |
| 16 |
| i |
| 8 |
②若方程T4(x)=kx恰有15个不同的实数根,确定k的取值;并求这15个不同的实数根的和.
(1)判断数列{an}:an=1-2n和数列{bn}:bn=1-2n是否为集合A或B中的元素?
(2)已知数列an=(n-k)3,研究{an}是否为集合A或B中的元素;若是,求出实数k的取值范围;若不是,请说明理由.
(3)已an=31(-1)i•log2n(i∈Z,n∈N*),若{an}为集合B中的元素,求满足不等式|2n-an|<60的n的值组成的集合.