摘要:∴当时.f(x)的值域是 4分在[0.2]上的值域是A.
网址:http://m.1010jiajiao.com/timu_id_364737[举报]
已知函数f(x)=kx+m,当x∈[a1,b1]时,f(x)的值域为[a2,b2],当x∈[a2,b2]时,f(x)的值域为[a3,b3],…,依此类推,一般地,当x∈[an-1,bn-1]时,f(x)的值域为[an,bn],其中k、m为常数,且a1=0,b1=1.
(1)若k=1,求数列{an},{bn}的通项公式;
(2)若m=2,问是否存在常数k>0,使得数列{bn}满足
bn=4.若存在,求k的值;若不存在,请说明理由;
(3)若k<0,设数列{an},{bn}的前n项和分别为Sn,Tn,求(T1+T2+…+T2010)-(S1+S2+…+S2010). 查看习题详情和答案>>
(1)若k=1,求数列{an},{bn}的通项公式;
(2)若m=2,问是否存在常数k>0,使得数列{bn}满足
| lim | n→∞ |
(3)若k<0,设数列{an},{bn}的前n项和分别为Sn,Tn,求(T1+T2+…+T2010)-(S1+S2+…+S2010). 查看习题详情和答案>>
已知函数f(x)=kx+m,当x∈[a1,b1]时,f(x)的值域为[a2,b2],当x∈[a2,b2]时,f(x)的值域为[a3,b3],依此类推,一般地,当x∈[an-1,bn-1]时,f(x)的值域为[an,bn],其中k、m为常数,且a1=0,b1=1.
(1)若k=1,求数列{an},{bn}的通项公式;
(2)若m=2,问是否存在常数k>0,使得数列{bn}满足
bn=4?若存在,求k的值;若不存在,请说明理由;
(3)若k<0,设数列{an},{bn}的前n项和分别为Sn,Tn,求T2010-S2010.
查看习题详情和答案>>
(1)若k=1,求数列{an},{bn}的通项公式;
(2)若m=2,问是否存在常数k>0,使得数列{bn}满足
| lim | n→∞ |
(3)若k<0,设数列{an},{bn}的前n项和分别为Sn,Tn,求T2010-S2010.
已知函数f(x)=kx+m,当x∈[a1,b1]时,f(x)的值域为[a2,b2],当x∈[a2,b2]时,f(x)的值域为[a3,b3],依此类推,一般地,当x∈[an-1,bn-1]时,f(x)的值域为[an,bn],其中k、m为常数,且a1=0,b1=1.
(1)若k=1,求数列{an},{bn}的通项公式;
(2)项m=2,问是否存在常数k>0,使得数列{bn}满足
bn=4?若存在,求k的值;若不存在,请说明理由;
(3)若k<0,设数列{an},{bn}的前n项和分别为Sn,Tn,求T2010-S2010.
查看习题详情和答案>>
(1)若k=1,求数列{an},{bn}的通项公式;
(2)项m=2,问是否存在常数k>0,使得数列{bn}满足
| lim |
| n→∞ |
(3)若k<0,设数列{an},{bn}的前n项和分别为Sn,Tn,求T2010-S2010.